Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: C. B. Farmer x
- Refine by Access: All Content x
Abstract
A preliminary analysis of high resolution image tube spectra of Jupiter in the region of the R branch of the 3ν3 band of methane is reported. The results indicate, for a simple reflecting layer model, that the effective pressure for the formation of lines in this band is 2.3±0.5 atm.
Abstract
A preliminary analysis of high resolution image tube spectra of Jupiter in the region of the R branch of the 3ν3 band of methane is reported. The results indicate, for a simple reflecting layer model, that the effective pressure for the formation of lines in this band is 2.3±0.5 atm.
Abstract
Atmospheric temperature profiles, obtained from spectral radiances of the earth between 2160 and 2360 cm−1 measured by a balloonborne, multi-detector, grating spectrometer at 3.5 mb during a 6-hr flight, are described. Representative profiles obtained both before and after sunrise and for clear and cloudy skies show that atmospheric temperatures accurate to ∼2K can be inferred. The variations of surface temperature during the flight are discussed.
Abstract
Atmospheric temperature profiles, obtained from spectral radiances of the earth between 2160 and 2360 cm−1 measured by a balloonborne, multi-detector, grating spectrometer at 3.5 mb during a 6-hr flight, are described. Representative profiles obtained both before and after sunrise and for clear and cloudy skies show that atmospheric temperatures accurate to ∼2K can be inferred. The variations of surface temperature during the flight are discussed.
Abstract
The Southeast Atmosphere Studies (SAS), which included the Southern Oxidant and Aerosol Study (SOAS); the Southeast Nexus (SENEX) study; and the Nitrogen, Oxidants, Mercury and Aerosols: Distributions, Sources and Sinks (NOMADSS) study, was deployed in the field from 1 June to 15 July 2013 in the central and eastern United States, and it overlapped with and was complemented by the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. SAS investigated atmospheric chemistry and the associated air quality and climate-relevant particle properties. Coordinated measurements from six ground sites, four aircraft, tall towers, balloon-borne sondes, existing surface networks, and satellites provide in situ and remotely sensed data on trace-gas composition, aerosol physicochemical properties, and local and synoptic meteorology. Selected SAS findings indicate 1) dramatically reduced NOx concentrations have altered ozone production regimes; 2) indicators of “biogenic” secondary organic aerosol (SOA), once considered part of the natural background, were positively correlated with one or more indicators of anthropogenic pollution; and 3) liquid water dramatically impacted particle scattering while biogenic SOA did not. SAS findings suggest that atmosphere–biosphere interactions modulate ambient pollutant concentrations through complex mechanisms and feedbacks not yet adequately captured in atmospheric models. The SAS dataset, now publicly available, is a powerful constraint to develop predictive capability that enhances model representation of the response and subsequent impacts of changes in atmospheric composition to changes in emissions, chemistry, and meteorology.
Abstract
The Southeast Atmosphere Studies (SAS), which included the Southern Oxidant and Aerosol Study (SOAS); the Southeast Nexus (SENEX) study; and the Nitrogen, Oxidants, Mercury and Aerosols: Distributions, Sources and Sinks (NOMADSS) study, was deployed in the field from 1 June to 15 July 2013 in the central and eastern United States, and it overlapped with and was complemented by the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. SAS investigated atmospheric chemistry and the associated air quality and climate-relevant particle properties. Coordinated measurements from six ground sites, four aircraft, tall towers, balloon-borne sondes, existing surface networks, and satellites provide in situ and remotely sensed data on trace-gas composition, aerosol physicochemical properties, and local and synoptic meteorology. Selected SAS findings indicate 1) dramatically reduced NOx concentrations have altered ozone production regimes; 2) indicators of “biogenic” secondary organic aerosol (SOA), once considered part of the natural background, were positively correlated with one or more indicators of anthropogenic pollution; and 3) liquid water dramatically impacted particle scattering while biogenic SOA did not. SAS findings suggest that atmosphere–biosphere interactions modulate ambient pollutant concentrations through complex mechanisms and feedbacks not yet adequately captured in atmospheric models. The SAS dataset, now publicly available, is a powerful constraint to develop predictive capability that enhances model representation of the response and subsequent impacts of changes in atmospheric composition to changes in emissions, chemistry, and meteorology.
Abstract
Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical–meteorological interactions that drive high-pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in western U.S. basins. Approximately 120 people participated, representing 50 institutions and five countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological–chemical linkages outlined here, nor to validate complex processes within coupled atmosphere–chemistry models.
Abstract
Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical–meteorological interactions that drive high-pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in western U.S. basins. Approximately 120 people participated, representing 50 institutions and five countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological–chemical linkages outlined here, nor to validate complex processes within coupled atmosphere–chemistry models.