Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: C. D. Hewitt x
  • All content x
Clear All Modify Search
C. D. Hewitt and J. F. B. Mitchell

Abstract

A simulation of the climate for 6 kyr BP, using the Hadley Centre's atmospheric GCM with prescribed SSTs is described. The control simulation successfully reproduces the large-scale features of the present-day climate and has realistic atmospheric interannual variability. The anomaly simulation for 6 kyr BP produces a climate with an enhanced Northern Hemisphere seasonal cycle, and, in particular, a strengthened African-Asian summer monsoon. Integrated over the full annual cycle, the land surface of the southern Tropics dries while the northern Tropics get wetter, and the high northern latitudes also dry. The model simulates large regional interdecadal differences in the response at 6 kyr BP highlighting the need to allow for and account for variability on long, that is, at least decadal, timescales. The authors describe the consequences of part of the experimental design employed, whereby the SSTs for the 6 kyr BP simulation are the same as in the control as recommended by the Paleoclimate Modelling Intercomparison Project, in particular, the potential importance of ocean and sea ice feedbacks.

Full access
C. D. Hewitt, A. J. Broccoli, M. Crucifix, J. M. Gregory, J. F. B. Mitchell, and R. J. Stouffer

Abstract

The commonly held view of the conditions in the North Atlantic at the last glacial maximum, based on the interpretation of proxy records, is of large-scale cooling compared to today, limited deep convection, and extensive sea ice, all associated with a southward displaced and weakened overturning thermohaline circulation (THC) in the North Atlantic. Not all studies support that view; in particular, the “strength of the overturning circulation” is contentious and is a quantity that is difficult to determine even for the present day. Quasi-equilibrium simulations with coupled climate models forced by glacial boundary conditions have produced differing results, as have inferences made from proxy records. Most studies suggest the weaker circulation, some suggest little or no change, and a few suggest a stronger circulation.

Here results are presented from a three-dimensional climate model, the Hadley Centre Coupled Model version 3 (HadCM3), of the coupled atmosphere–ocean–sea ice system suggesting, in a qualitative sense, that these diverging views could all have occurred at different times during the last glacial period, with different modes existing at different times. One mode might have been characterized by an active THC associated with moderate temperatures in the North Atlantic and a modest expanse of sea ice. The other mode, perhaps forced by large inputs of meltwater from the continental ice sheets into the northern North Atlantic, might have been characterized by a sluggish THC associated with very cold conditions around the North Atlantic and a large areal cover of sea ice. The authors’ model simulation of such a mode, forced by a large input of freshwater, bears several of the characteristics of the Climate: Long-range Investigation, Mapping, and Prediction (CLIMAP) Project’s reconstruction of glacial sea surface temperature and sea ice extent.

Full access
K. E. Taylor, M. Crucifix, P. Braconnot, C. D. Hewitt, C. Doutriaux, A. J. Broccoli, J. F. B. Mitchell, and M. J. Webb

Abstract

Feedback analysis in climate models commonly involves decomposing any change in the system’s energy balance into radiative forcing terms due to prescribed changes, and response terms due to the radiative effects of changes in model variables such as temperature, water vapor, clouds, sea ice, and snow. The established “partial radiative perturbation” (PRP) method allows an accurate separation of these terms, but requires processing large volumes of model output with an offline version of the model’s radiation code. Here, we propose an “approximate PRP” (APRP) method for the shortwave that provides an accurate estimate of the radiative perturbation, but derived from a quite modest amount of monthly mean model output.

The APRP method is based on a simplified shortwave radiative model of the atmosphere, where surface absorption and atmospheric scattering and absorption are represented by means of three parameters that are diagnosed for overcast and clear-sky portions of each model grid cell. The accuracy of the method is gauged relative to full PRP calculations in two experiments: one in which carbon dioxide concentration is doubled and another in which conditions of the Last Glacial Maximum (LGM) are simulated. The approximate PRP method yields a shortwave cloud feedback accurate in the global mean to within 7%. Forcings and feedbacks due to surface albedo and noncloud atmospheric constituents are also well approximated with errors of order 5%–10%. Comparison of two different model simulations of the LGM shows that the regional and global differences in their ice sheet albedo forcing fields are clearly captured by the APRP method. Hence this method is an efficient and satisfactory tool for studying and intercomparing shortwave forcing and feedbacks in climate models.

Full access
S. P. Harrison, D. Jolly, F. Laarif, A. Abe-Ouchi, B. Dong, K. Herterich, C. Hewitt, S. Joussaume, J. E. Kutzbach, J. Mitchell, N. de Noblet, and P. Valdes

Abstract

The response of ten atmospheric general circulation models to orbital forcing at 6 kyr BP has been investigated using the BIOME model, which predicts equilibrium vegetation distribution, as a diagnostic. Several common features emerge: (a) reduced tropical rain forest as a consequence of increased aridity in the equatorial zone, (b) expansion of moisture-demanding vegetation in the Old World subtropics as a consequence of the expansion of the Afro–Asian monsoon, (c) an increase in warm grass/shrub in the Northern Hemisphere continental interiors in response to warming and enhanced aridity, and (d) a northward shift in the tundra–forest boundary in response to a warmer growing season at high northern latitudes. These broadscale features are consistent from model to model, but there are differences in their expression at a regional scale. Vegetation changes associated with monsoon enhancement and high-latitude summer warming are consistent with palaeoenvironmental observations, but the simulated shifts in vegetation belts are too small in both cases. Vegetation changes due to warmer and more arid conditions in the midcontinents of the Northern Hemisphere are consistent with palaeoenvironmental data from North America, but data from Eurasia suggests conditions were wetter at 6 kyr BP than today. The models show quantitatively similar vegetation changes in the intertropical zone, and in the northern and southern extratropics. The small differences among models in the magnitude of the global vegetation response are not related to differences in global or zonal climate averages, but reflect differences in simulated regional features. Regional-scale analyses will therefore be necessary to identify the underlying causes of such differences among models.

Full access
C. D. Hewitt, F. Guglielmo, S. Joussaume, J. Bessembinder, I. Christel, F. J. Doblas-Reyes, V. Djurdjevic, N. Garrett, E. Kjellström, A. Krzic, M. Máñez Costa, and A. L. St. Clair

Capsule

Recommendations for key future research topics for climate modelling and climate services are presented, as compiled by a group of experts across Europe.

Full access
C. D. Hewitt, E. Allis, S. J. Mason, M. Muth, R. Pulwarty, J. Shumake-Guillemot, A. Bucher, M. Brunet, A. M. Fischer, A. M. Hama, R. K. Kolli, F. Lucio, O. Ndiaye, and B. Tapia

Abstract

There is growing awareness among governments, businesses, and the general public of risks arising from changes to our climate on time scales from months through to decades. Some climatic changes could be unprecedented in their harmful socioeconomic impacts, while others with adequate forewarning and planning could offer benefits. There is therefore a pressing need for decision-makers, including policy-makers, to have access to and to use high-quality, accessible, relevant, and credible climate information about the past, present, and future to help make better-informed decisions and policies. We refer to the provision and use of such information as climate services. Established programs of research and operational activities are improving observations and climate monitoring, our understanding of climate processes, climate variability and change, and predictions and projections of the future climate. Delivering climate information (including data and knowledge) in a way that is usable and useful for decision-makers has had less attention, and society has yet to optimally benefit from the available information. While weather services routinely help weather-sensitive decision-making, similar services for decisions on longer time scales are less well established. Many organizations are now actively developing climate services, and a growing number of decision-makers are keen to benefit from such services. This article describes progress made over the past decade developing, delivering, and using climate services, in particular from the worldwide effort galvanizing around the Global Framework for Climate Services under the coordination of UN agencies. The article highlights challenges in making further progress and proposes potential new directions to address such challenges.

Free access