Search Results
You are looking at 1 - 10 of 48 items for
- Author or Editor: C. King x
- Refine by Access: All Content x
Abstract
Surface pressure measurements from instruments deployed on ice floes in the southern Bellingshausen Sea were used to assess the accuracy of European Centre for Medium-Range Weather Forecasts (ECMWF) analyses in this region during February–May 2001. Despite the lack of in situ observations from this region, the analyses were found to be in very good agreement with the observed pressures and pressure gradients. The absolute difference between observed and analyzed pressures never exceeded 2.7 hPa over a pressure range of 965–1000 hPa. Standard deviations of the differences between observed and analyzed pressures were typically around 1 hPa. When additional in situ surface pressure observations from this region became available for use in the analyses, the agreement between analyzed and observed pressures improved only slightly. This suggests that atmospheric analyses are constrained well by satellite temperature soundings and other remotely sensed data in this region.
Abstract
Surface pressure measurements from instruments deployed on ice floes in the southern Bellingshausen Sea were used to assess the accuracy of European Centre for Medium-Range Weather Forecasts (ECMWF) analyses in this region during February–May 2001. Despite the lack of in situ observations from this region, the analyses were found to be in very good agreement with the observed pressures and pressure gradients. The absolute difference between observed and analyzed pressures never exceeded 2.7 hPa over a pressure range of 965–1000 hPa. Standard deviations of the differences between observed and analyzed pressures were typically around 1 hPa. When additional in situ surface pressure observations from this region became available for use in the analyses, the agreement between analyzed and observed pressures improved only slightly. This suggests that atmospheric analyses are constrained well by satellite temperature soundings and other remotely sensed data in this region.
Abstract
No abstract available
Abstract
No abstract available
Abstract
Surface radiation measurements and other climatological data were used to validate the representation of the surface energy balance over the East Antarctic Ice Sheet in the U.K. Meteorological Office Unified Climate Model. Model calculations of incident and reflected shortwave radiation are in good agreement with observations, but the downward component of longwave radiation at the surface appears to be underestimated by up to 20 W m−2 in the model. Over much of the interior of Antarctica this error appears to be compensated for by an overestimate in turbulent transport of heat to the surface, while over the steep coastal slopes the heat flux is in good agreement with observations but the surface temperature is too low. The excessive heat flux over the interior results largely from the use of an inappropriately large bulk transfer coefficient under very stable conditions, suggesting that the surface heat flux scheme in the model is not ideally formulated for the conditions that prevail in the Antarctic boundary layer.
Abstract
Surface radiation measurements and other climatological data were used to validate the representation of the surface energy balance over the East Antarctic Ice Sheet in the U.K. Meteorological Office Unified Climate Model. Model calculations of incident and reflected shortwave radiation are in good agreement with observations, but the downward component of longwave radiation at the surface appears to be underestimated by up to 20 W m−2 in the model. Over much of the interior of Antarctica this error appears to be compensated for by an overestimate in turbulent transport of heat to the surface, while over the steep coastal slopes the heat flux is in good agreement with observations but the surface temperature is too low. The excessive heat flux over the interior results largely from the use of an inappropriately large bulk transfer coefficient under very stable conditions, suggesting that the surface heat flux scheme in the model is not ideally formulated for the conditions that prevail in the Antarctic boundary layer.
Abstract
Lightning flash data for Arizona from the Bureau of Land Management's magnetic detection finder network are analyzed for the 1989 and 1990 summer monsoon seasons. Results from harmonic analysis reveal a strong diurnal cycle in the frequency of lightning flashes. In much of the state, the time of maximum occurs in the mid-to-late afternoon period. However, in the large valley of central Arizona, the time of maximum lightning frequency is closer to midnight. These results from the emerging lightning flash database should be useful in (a) further evaluating the role of various mechanisms responsible for the nocturnal convective regime of central Arizona, (b) verifying existing and future numerical models of precipitation processes in the region, and (c) preparing and evaluating forecasts of summertime convective events in Arizona.
Abstract
Lightning flash data for Arizona from the Bureau of Land Management's magnetic detection finder network are analyzed for the 1989 and 1990 summer monsoon seasons. Results from harmonic analysis reveal a strong diurnal cycle in the frequency of lightning flashes. In much of the state, the time of maximum occurs in the mid-to-late afternoon period. However, in the large valley of central Arizona, the time of maximum lightning frequency is closer to midnight. These results from the emerging lightning flash database should be useful in (a) further evaluating the role of various mechanisms responsible for the nocturnal convective regime of central Arizona, (b) verifying existing and future numerical models of precipitation processes in the region, and (c) preparing and evaluating forecasts of summertime convective events in Arizona.
Abstract
We describe a sequence of tethersonde and solar measurements showing the effects of the pooling of cold air drainages in a basin located along the Colorado River below the Brush drainage. Results obtained during periods of weak ambient winds show that the basin fills over a period of several hours, then eventually overflows. The depth of the pool is such as to affect tributary drainages, such as that of Brush Creek, and to cause the accumulating drainage jets to become elevated as they flow down the larger drainage channels into the basin.
Abstract
We describe a sequence of tethersonde and solar measurements showing the effects of the pooling of cold air drainages in a basin located along the Colorado River below the Brush drainage. Results obtained during periods of weak ambient winds show that the basin fills over a period of several hours, then eventually overflows. The depth of the pool is such as to affect tributary drainages, such as that of Brush Creek, and to cause the accumulating drainage jets to become elevated as they flow down the larger drainage channels into the basin.
Abstract
Pacific-originating storms that produce heavy leeside liquid precipitation in the Sierra Nevada are rare compared to those that generate windward slope rainfall. However, these leeside precipitation events have a profound effect on the flood hydrology of leeside basins in the Sierra Nevada. This study identified 12 storms that affected the Truckee River basin in northeastern Nevada. The storms produced both moderate and extreme flooding in this leeside basin. A synoptic-scale analysis of conditions leading to leeside storms was produced using a compositing procedure. Composites for multiple pressure levels and multiple parameters were produced for class 1 storms—those storms producing moderate flood flow in the Truckee River basin—and class 2 storms—those producing extreme flooding [>10 000 cubic feet per second (cfs), or 283 m3 s−1] in this basin. The analysis confirms that the two flood populations are in fact generated by Pacific-originating storms with observably different synoptic-scale circulations. The class 2 storms are moister through a great depth in the troposphere (saturated to 750 hPa), and they occur coincident with warmer conditions in the lower and midtroposphere. Class 2 events exhibited more favorable upper-level jet streak structures in the eastern Pacific and over western North America. Both classes of leeside storms were shown to differ substantially from Pacific-originating storms that exclusively affect the windward slope of the Sierra and the coastal mountain ranges of California (California storms). The leeside storms were much warmer than California storms through much of the lower and midtroposphere, and the onshore flow was predominantly from the west-southwest in leeside storms compared to southerly flow in California storms. The findings suggest the existence of a midlevel atmospheric river delivering moisture to leeside basins of the Sierra Nevada.
Abstract
Pacific-originating storms that produce heavy leeside liquid precipitation in the Sierra Nevada are rare compared to those that generate windward slope rainfall. However, these leeside precipitation events have a profound effect on the flood hydrology of leeside basins in the Sierra Nevada. This study identified 12 storms that affected the Truckee River basin in northeastern Nevada. The storms produced both moderate and extreme flooding in this leeside basin. A synoptic-scale analysis of conditions leading to leeside storms was produced using a compositing procedure. Composites for multiple pressure levels and multiple parameters were produced for class 1 storms—those storms producing moderate flood flow in the Truckee River basin—and class 2 storms—those producing extreme flooding [>10 000 cubic feet per second (cfs), or 283 m3 s−1] in this basin. The analysis confirms that the two flood populations are in fact generated by Pacific-originating storms with observably different synoptic-scale circulations. The class 2 storms are moister through a great depth in the troposphere (saturated to 750 hPa), and they occur coincident with warmer conditions in the lower and midtroposphere. Class 2 events exhibited more favorable upper-level jet streak structures in the eastern Pacific and over western North America. Both classes of leeside storms were shown to differ substantially from Pacific-originating storms that exclusively affect the windward slope of the Sierra and the coastal mountain ranges of California (California storms). The leeside storms were much warmer than California storms through much of the lower and midtroposphere, and the onshore flow was predominantly from the west-southwest in leeside storms compared to southerly flow in California storms. The findings suggest the existence of a midlevel atmospheric river delivering moisture to leeside basins of the Sierra Nevada.
Abstract
The seasonality, regionality, and nature of the association between tropical convection and the 5-day wavenumber-1 Rossby–Haurwitz wave are examined. Spectral coherences between daily outgoing longwave radiation (OLR), a proxy for convection, and 850-hPa zonal wind over the period January 1979–February 2013 are compared for different seasons and for phases of El Niño–Southern Oscillation (ENSO) and the quasi-biennial oscillation (QBO). Increased coherence, indicating a stronger association, occurs in boreal spring and autumn, with slightly reduced coherence in boreal summer and significantly reduced coherence in boreal winter. The regionality of the association is examined using lagged-regression techniques. Significant local signals in tropical convection are found over West Africa, the tropical Andes, the eastern Pacific Ocean, and the Marshall Islands. The relative phasing between the 5-day wave wind and OLR signals is in quadrature in Africa and the Marshall Islands, in phase with easterlies over the Andes, and out of phase with easterlies over the eastern Pacific. Frequency spectra of precipitation averaged over the identified local regions reveal spectral peaks in the 4–6-day range. The phasing between the large-scale wind and local convection signals suggests that the 5-day wave is actively modulating the convection around the Americas.
Abstract
The seasonality, regionality, and nature of the association between tropical convection and the 5-day wavenumber-1 Rossby–Haurwitz wave are examined. Spectral coherences between daily outgoing longwave radiation (OLR), a proxy for convection, and 850-hPa zonal wind over the period January 1979–February 2013 are compared for different seasons and for phases of El Niño–Southern Oscillation (ENSO) and the quasi-biennial oscillation (QBO). Increased coherence, indicating a stronger association, occurs in boreal spring and autumn, with slightly reduced coherence in boreal summer and significantly reduced coherence in boreal winter. The regionality of the association is examined using lagged-regression techniques. Significant local signals in tropical convection are found over West Africa, the tropical Andes, the eastern Pacific Ocean, and the Marshall Islands. The relative phasing between the 5-day wave wind and OLR signals is in quadrature in Africa and the Marshall Islands, in phase with easterlies over the Andes, and out of phase with easterlies over the eastern Pacific. Frequency spectra of precipitation averaged over the identified local regions reveal spectral peaks in the 4–6-day range. The phasing between the large-scale wind and local convection signals suggests that the 5-day wave is actively modulating the convection around the Americas.
Abstract
We have explored the applicability of the differential inversion (DI) method to temperature retrievals in both clear and cloudy atmospheres using red satellite data. The main theme of the DI is that the local Planck intensity can be exactly expressed by a linear combination of the derivatives of radiances in the logarithmic pressure coordinate. The inversion coefficients are obtained by fitting the weighting function to a generalized form. The higher-order derivatives of radiances are determined from polynomial fittings. The satellite dataset used in this work contains collocated brightness temperatures and radiosonde data that have been collected during the period of Baseline Upper Atmospheric Network (BUAN) experiments. These data include both cloudy and clear cases. A multispectral cloud-removal method using the principle of the N * method has been developed. This method uses radiances of High-Resolution Infrared Radiation Sounder channels 6, 7, and 8 to estimate clear radiances of these channels and the surface temperature simultaneously based on radiative transfer simulations. Subsequently, the quantity N * (the ratio of effective cloud cover over adjacent pixels) and the clear radiances of the rest of the channels are evaluated.
Retrieval results are presented in terms of rms temperature differences between retrieved and sounding profiles. Considering all clear and partly cloudy cases, the rms differences in temperature of approximately 2 K for retrievals using the DI are comparable to those using the minimum-variance scheme. The rms differences in temperature for retrievals using the multispectral cloud-removal scheme are slightly larger than those using the BUAN cloud-removal scheme by approximately 0.5 K. Finally, the rms temperature differences are much smaller than those for the first guess of the minimum-variance scheme. These results indicate fire that the DJ can achieve acceptable performance without first-guess or error covariance matrices; second, that the proposed multispectral cloud-removal method is also capable of generating reasonable cloud-removed clear radiances; and finally that the DI can be used as a tool to obtain first guesses in the current operational method and to perform large-volume temperature retrievals for climate studies.
Abstract
We have explored the applicability of the differential inversion (DI) method to temperature retrievals in both clear and cloudy atmospheres using red satellite data. The main theme of the DI is that the local Planck intensity can be exactly expressed by a linear combination of the derivatives of radiances in the logarithmic pressure coordinate. The inversion coefficients are obtained by fitting the weighting function to a generalized form. The higher-order derivatives of radiances are determined from polynomial fittings. The satellite dataset used in this work contains collocated brightness temperatures and radiosonde data that have been collected during the period of Baseline Upper Atmospheric Network (BUAN) experiments. These data include both cloudy and clear cases. A multispectral cloud-removal method using the principle of the N * method has been developed. This method uses radiances of High-Resolution Infrared Radiation Sounder channels 6, 7, and 8 to estimate clear radiances of these channels and the surface temperature simultaneously based on radiative transfer simulations. Subsequently, the quantity N * (the ratio of effective cloud cover over adjacent pixels) and the clear radiances of the rest of the channels are evaluated.
Retrieval results are presented in terms of rms temperature differences between retrieved and sounding profiles. Considering all clear and partly cloudy cases, the rms differences in temperature of approximately 2 K for retrievals using the DI are comparable to those using the minimum-variance scheme. The rms differences in temperature for retrievals using the multispectral cloud-removal scheme are slightly larger than those using the BUAN cloud-removal scheme by approximately 0.5 K. Finally, the rms temperature differences are much smaller than those for the first guess of the minimum-variance scheme. These results indicate fire that the DJ can achieve acceptable performance without first-guess or error covariance matrices; second, that the proposed multispectral cloud-removal method is also capable of generating reasonable cloud-removed clear radiances; and finally that the DI can be used as a tool to obtain first guesses in the current operational method and to perform large-volume temperature retrievals for climate studies.
Abstract
The term “new normal” has been used in scientific literature and public commentary to contextualize contemporary climate events as an indicator of a changing climate due to enhanced greenhouse warming. A new normal has been used broadly but tends to be descriptive and ambiguously defined. Here we review previous studies conceptualizing this idea of a new climatological normal and argue that this term should be used cautiously and with explicit definition in order to avoid confusion. We provide a formal definition of a new climate normal relative to present based around record-breaking contemporary events and explore the timing of when such extremes become statistically normal in the future model simulations. Applying this method to the record-breaking global-average 2015 temperatures as a reference event and a suite of model climate models, we determine that 2015 global annual-average temperatures will be the new normal by 2040 in all emissions scenarios. At the regional level, a new normal can be delayed through aggressive greenhouse gas emissions reductions. Using this specific case study to investigate a climatological new normal, our approach demonstrates the greater value of the concept of a climatological new normal for understanding and communicating climate change when the term is explicitly defined. This approach moves us one step closer to understanding how current extremes will change in the future in a warming world.
Abstract
The term “new normal” has been used in scientific literature and public commentary to contextualize contemporary climate events as an indicator of a changing climate due to enhanced greenhouse warming. A new normal has been used broadly but tends to be descriptive and ambiguously defined. Here we review previous studies conceptualizing this idea of a new climatological normal and argue that this term should be used cautiously and with explicit definition in order to avoid confusion. We provide a formal definition of a new climate normal relative to present based around record-breaking contemporary events and explore the timing of when such extremes become statistically normal in the future model simulations. Applying this method to the record-breaking global-average 2015 temperatures as a reference event and a suite of model climate models, we determine that 2015 global annual-average temperatures will be the new normal by 2040 in all emissions scenarios. At the regional level, a new normal can be delayed through aggressive greenhouse gas emissions reductions. Using this specific case study to investigate a climatological new normal, our approach demonstrates the greater value of the concept of a climatological new normal for understanding and communicating climate change when the term is explicitly defined. This approach moves us one step closer to understanding how current extremes will change in the future in a warming world.
Abstract
A further 400 h of flying experience with the CSIRO hot-wire probe has shown that it can accurately measure liquid water content in clouds. Computations and experiments suggest that when an epoxy coating is used for protection, it should be less than 50 μm thick, and that the wire should be operated around 160°C when such coatings are used. Comparisons of performance with the Axially Scattering Spectrometer Probe and in a wet wind tunnel indicate that splashing of drops up to 40 μm diameter is not a problem at speeds up to 80 m s−1.
Abstract
A further 400 h of flying experience with the CSIRO hot-wire probe has shown that it can accurately measure liquid water content in clouds. Computations and experiments suggest that when an epoxy coating is used for protection, it should be less than 50 μm thick, and that the wire should be operated around 160°C when such coatings are used. Comparisons of performance with the Axially Scattering Spectrometer Probe and in a wet wind tunnel indicate that splashing of drops up to 40 μm diameter is not a problem at speeds up to 80 m s−1.