Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: C. M. Hocut x
  • Refine by Access: All Content x
Clear All Modify Search
H. J. S. Fernando
,
J. Mann
,
J. M. L. M. Palma
,
J. K. Lundquist
,
R. J. Barthelmie
,
M. Belo-Pereira
,
W. O. J. Brown
,
F. K. Chow
,
T. Gerz
,
C. M. Hocut
,
P. M. Klein
,
L. S. Leo
,
J. C. Matos
,
S. P. Oncley
,
S. C. Pryor
,
L. Bariteau
,
T. M. Bell
,
N. Bodini
,
M. B. Carney
,
M. S. Courtney
,
E. D. Creegan
,
R. Dimitrova
,
S. Gomes
,
M. Hagen
,
J. O. Hyde
,
S. Kigle
,
R. Krishnamurthy
,
J. C. Lopes
,
L. Mazzaro
,
J. M. T. Neher
,
R. Menke
,
P. Murphy
,
L. Oswald
,
S. Otarola-Bustos
,
A. K. Pattantyus
,
C. Veiga Rodrigues
,
A. Schady
,
N. Sirin
,
S. Spuler
,
E. Svensson
,
J. Tomaszewski
,
D. D. Turner
,
L. van Veen
,
N. Vasiljević
,
D. Vassallo
,
S. Voss
,
N. Wildmann
, and
Y. Wang

Abstract

A grand challenge from the wind energy industry is to provide reliable forecasts on mountain winds several hours in advance at microscale (∼100 m) resolution. This requires better microscale wind-energy physics included in forecasting tools, for which field observations are imperative. While mesoscale (∼1 km) measurements abound, microscale processes are not monitored in practice nor do plentiful measurements exist at this scale. After a decade of preparation, a group of European and U.S. collaborators conducted a field campaign during 1 May–15 June 2017 in Vale Cobrão in central Portugal to delve into microscale processes in complex terrain. This valley is nestled within a parallel double ridge near the town of Perdigão with dominant wind climatology normal to the ridges, offering a nominally simple yet natural setting for fundamental studies. The dense instrument ensemble deployed covered a ∼4 km × 4 km swath horizontally and ∼10 km vertically, with measurement resolutions of tens of meters and seconds. Meteorological data were collected continuously, capturing multiscale flow interactions from synoptic to microscales, diurnal variability, thermal circulation, turbine wake and acoustics, waves, and turbulence. Particularly noteworthy are the extensiveness of the instrument array, space–time scales covered, use of leading-edge multiple-lidar technology alongside conventional tower and remote sensors, fruitful cross-Atlantic partnership, and adaptive management of the campaign. Preliminary data analysis uncovered interesting new phenomena. All data are being archived for public use.

Full access
H. J. S. Fernando
,
E. R. Pardyjak
,
S. Di Sabatino
,
F. K. Chow
,
S. F. J. De Wekker
,
S. W. Hoch
,
J. Hacker
,
J. C. Pace
,
T. Pratt
,
Z. Pu
,
W. J. Steenburgh
,
C. D. Whiteman
,
Y. Wang
,
D. Zajic
,
B. Balsley
,
R. Dimitrova
,
G. D. Emmitt
,
C. W. Higgins
,
J. C. R. Hunt
,
J. C. Knievel
,
D. Lawrence
,
Y. Liu
,
D. F. Nadeau
,
E. Kit
,
B. W. Blomquist
,
P. Conry
,
R. S. Coppersmith
,
E. Creegan
,
M. Felton
,
A. Grachev
,
N. Gunawardena
,
C. Hang
,
C. M. Hocut
,
G. Huynh
,
M. E. Jeglum
,
D. Jensen
,
V. Kulandaivelu
,
M. Lehner
,
L. S. Leo
,
D. Liberzon
,
J. D. Massey
,
K. McEnerney
,
S. Pal
,
T. Price
,
M. Sghiatti
,
Z. Silver
,
M. Thompson
,
H. Zhang
, and
T. Zsedrovits

Abstract

Emerging application areas such as air pollution in megacities, wind energy, urban security, and operation of unmanned aerial vehicles have intensified scientific and societal interest in mountain meteorology. To address scientific needs and help improve the prediction of mountain weather, the U.S. Department of Defense has funded a research effort—the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program—that draws the expertise of a multidisciplinary, multi-institutional, and multinational group of researchers. The program has four principal thrusts, encompassing modeling, experimental, technology, and parameterization components, directed at diagnosing model deficiencies and critical knowledge gaps, conducting experimental studies, and developing tools for model improvements. The access to the Granite Mountain Atmospheric Sciences Testbed of the U.S. Army Dugway Proving Ground, as well as to a suite of conventional and novel high-end airborne and surface measurement platforms, has provided an unprecedented opportunity to investigate phenomena of time scales from a few seconds to a few days, covering spatial extents of tens of kilometers down to millimeters. This article provides an overview of the MATERHORN and a glimpse at its initial findings. Orographic forcing creates a multitude of time-dependent submesoscale phenomena that contribute to the variability of mountain weather at mesoscale. The nexus of predictions by mesoscale model ensembles and observations are described, identifying opportunities for further improvements in mountain weather forecasting.

Full access
H. J. S. Fernando
,
I. Gultepe
,
C. Dorman
,
E. Pardyjak
,
Q. Wang
,
S. W Hoch
,
D. Richter
,
E. Creegan
,
S. Gaberšek
,
T. Bullock
,
C. Hocut
,
R. Chang
,
D. Alappattu
,
R. Dimitrova
,
D. Flagg
,
A. Grachev
,
R. Krishnamurthy
,
D. K. Singh
,
I. Lozovatsky
,
B. Nagare
,
A. Sharma
,
S. Wagh
,
C. Wainwright
,
M. Wroblewski
,
R. Yamaguchi
,
S. Bardoel
,
R. S. Coppersmith
,
N. Chisholm
,
E. Gonzalez
,
N. Gunawardena
,
O. Hyde
,
T. Morrison
,
A. Olson
,
A. Perelet
,
W. Perrie
,
S. Wang
, and
B. Wauer

Abstract

C-FOG is a comprehensive bi-national project dealing with the formation, persistence, and dissipation (life cycle) of fog in coastal areas (coastal fog) controlled by land, marine, and atmospheric processes. Given its inherent complexity, coastal-fog literature has mainly focused on case studies, and there is a continuing need for research that integrates across processes (e.g., air–sea–land interactions, environmental flow, aerosol transport, and chemistry), dynamics (two-phase flow and turbulence), microphysics (nucleation, droplet characterization), and thermodynamics (heat transfer and phase changes) through field observations and modeling. Central to C-FOG was a field campaign in eastern Canada from 1 September to 8 October 2018, covering four land sites in Newfoundland and Nova Scotia and an adjacent coastal strip transected by the Research Vessel Hugh R. Sharp. An array of in situ, path-integrating, and remote sensing instruments gathered data across a swath of space–time scales relevant to fog life cycle. Satellite and reanalysis products, routine meteorological observations, numerical weather prediction model (WRF and COAMPS) outputs, large-eddy simulations, and phenomenological modeling underpin the interpretation of field observations in a multiscale and multiplatform framework that helps identify and remedy numerical model deficiencies. An overview of the C-FOG field campaign and some preliminary analysis/findings are presented in this paper.

Full access
H. J. S. Fernando
,
I. Gultepe
,
C. Dorman
,
E. Pardyjak
,
Q. Wang
,
S. W Hoch
,
D. Richter
,
E. Creegan
,
S. Gaberšek
,
T. Bullock
,
C. Hocut
,
R. Chang
,
D. Alappattu
,
R. Dimitrova
,
D. Flagg
,
A. Grachev
,
R. Krishnamurthy
,
D. K. Singh
,
I. Lozovatsky
,
B. Nagare
,
A. Sharma
,
S. Wagh
,
C. Wainwright
,
M. Wroblewski
,
R. Yamaguchi
,
S. Bardoel
,
R. S. Coppersmith
,
N. Chisholm
,
E. Gonzalez
,
N. Gunawardena
,
O. Hyde
,
T. Morrison
,
A. Olson
,
A. Perelet
,
W. Perrie
,
S. Wang
, and
B. Wauer
Full access