Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: C. Pöhlker x
  • Refine by Access: All Content x
Clear All Modify Search
J. Vilà-Guerau de Arellano
,
O. K. Hartogensis
,
H. de Boer
,
R. Moonen
,
R. González-Armas
,
M. Janssens
,
G. A. Adnew
,
D. J. Bonell-Fontás
,
S. Botía
,
S. P. Jones
,
H. van Asperen
,
S. Komiya
,
V. S. de Feiter
,
D. Rikkers
,
S. de Haas
,
L. A. T. Machado
,
C. Q. Dias-Junior
,
G. Giovanelli-Haytzmann
,
W. I. D. Valenti
,
R. C. Figueiredo
,
C. S. Farias
,
D. H. Hall
,
A. C. S. Mendonça
,
F. A. G. da Silva
,
J. L. Marton da Silva
,
R. Souza
,
G. Martins
,
J. N. Miller
,
W. B. Mol
,
B. Heusinkveld
,
C. C. van Heerwaarden
,
F. A. F. D’Oliveira
,
R. Rodrigues Ferreira
,
R. Acosta Gotuzzo
,
G. Pugliese
,
J. Williams
,
A. Ringsdorf
,
A. Edtbauer
,
C. A. Quesada
,
B. Takeshi Tanaka Portela
,
E. Gomes Alves
,
C. Pöhlker
,
S. Trumbore
,
J. Lelieveld
, and
T. Röckmann

Abstract

How are rain forest photosynthesis and turbulent fluxes influenced by clouds? To what extent are clouds affected by local processes driven by rain forest energy, water, and carbon fluxes? These interrelated questions were the main drivers of the intensive field experiment CloudRoots-Amazon22 which took place at the Amazon Tall Tower Observatory (ATTO)/Campina supersites in the Amazon rain forest during the dry season, in August 2022. CloudRoots-Amazon22 collected observational data to derive cause–effect relationships between processes occurring at the leaf level up to canopy scales in relation to the diurnal evolution of the clear-to-cloudy transition. First, we studied the impact of cloud and canopy radiation perturbations on the subdiurnal variability of stomatal conductance. Stoma opening is larger in the morning, modulated by the cloud optical thickness. Second, we combined 1-Hz frequency measurements of the stable isotopologues of carbon dioxide and water vapor with measurements of turbulence to determine carbon dioxide and water vapor sources and sinks within the canopy. Using scintillometer observations, we inferred 1-min sensible heat flux that responded within minutes to the cloud passages. Third, collocated profiles of state variables and greenhouse gases enabled us to determine the role of clouds in vertical transport. We then inferred, using canopy and upper-atmospheric observations and a parameterization, the cloud cover and cloud mass flux to establish causality between canopy and cloud processes. This shows the need for a comprehensive observational set to improve weather and climate model representations. Our findings contribute to advance our knowledge of the coupling between cloudy boundary layers and primary carbon productivity of the Amazon rain forest.

Open access
S. T. Martin
,
P. Artaxo
,
L. Machado
,
A. O. Manzi
,
R. A. F. Souza
,
C. Schumacher
,
J. Wang
,
T. Biscaro
,
J. Brito
,
A. Calheiros
,
K. Jardine
,
A. Medeiros
,
B. Portela
,
S. S. de Sá
,
K. Adachi
,
A. C. Aiken
,
R. Albrecht
,
L. Alexander
,
M. O. Andreae
,
H. M. J. Barbosa
,
P. Buseck
,
D. Chand
,
J. M. Comstock
,
D. A. Day
,
M. Dubey
,
J. Fan
,
J. Fast
,
G. Fisch
,
E. Fortner
,
S. Giangrande
,
M. Gilles
,
A. H. Goldstein
,
A. Guenther
,
J. Hubbe
,
M. Jensen
,
J. L. Jimenez
,
F. N. Keutsch
,
S. Kim
,
C. Kuang
,
A. Laskin
,
K. McKinney
,
F. Mei
,
M. Miller
,
R. Nascimento
,
T. Pauliquevis
,
M. Pekour
,
J. Peres
,
T. Petäjä
,
C. Pöhlker
,
U. Pöschl
,
L. Rizzo
,
B. Schmid
,
J. E. Shilling
,
M. A. Silva Dias
,
J. N. Smith
,
J. M. Tomlinson
,
J. Tóta
, and
M. Wendisch

Abstract

The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.

Full access
Manfred Wendisch
,
Ulrich Pöschl
,
Meinrat O. Andreae
,
Luiz A. T. Machado
,
Rachel Albrecht
,
Hans Schlager
,
Daniel Rosenfeld
,
Scot T. Martin
,
Ahmed Abdelmonem
,
Armin Afchine
,
Alessandro C. Araùjo
,
Paulo Artaxo
,
Heinfried Aufmhoff
,
Henrique M. J. Barbosa
,
Stephan Borrmann
,
Ramon Braga
,
Bernhard Buchholz
,
Micael Amore Cecchini
,
Anja Costa
,
Joachim Curtius
,
Maximilian Dollner
,
Marcel Dorf
,
Volker Dreiling
,
Volker Ebert
,
André Ehrlich
,
Florian Ewald
,
Gilberto Fisch
,
Andreas Fix
,
Fabian Frank
,
Daniel Fütterer
,
Christopher Heckl
,
Fabian Heidelberg
,
Tilman Hüneke
,
Evelyn Jäkel
,
Emma Järvinen
,
Tina Jurkat
,
Sandra Kanter
,
Udo Kästner
,
Mareike Kenntner
,
Jürgen Kesselmeier
,
Thomas Klimach
,
Matthias Knecht
,
Rebecca Kohl
,
Tobias Kölling
,
Martina Krämer
,
Mira Krüger
,
Trismono Candra Krisna
,
Jost V. Lavric
,
Karla Longo
,
Christoph Mahnke
,
Antonio O. Manzi
,
Bernhard Mayer
,
Stephan Mertes
,
Andreas Minikin
,
Sergej Molleker
,
Steffen Münch
,
Björn Nillius
,
Klaus Pfeilsticker
,
Christopher Pöhlker
,
Anke Roiger
,
Diana Rose
,
Dagmar Rosenow
,
Daniel Sauer
,
Martin Schnaiter
,
Johannes Schneider
,
Christiane Schulz
,
Rodrigo A. F. de Souza
,
Antonio Spanu
,
Paul Stock
,
Daniel Vila
,
Christiane Voigt
,
Adrian Walser
,
David Walter
,
Ralf Weigel
,
Bernadett Weinzierl
,
Frank Werner
,
Marcia A. Yamasoe
,
Helmut Ziereis
,
Tobias Zinner
, and
Martin Zöger

Abstract

Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON– CHUVA) venture to quantify aerosol–cloud–precipitation interactions and their thermodynamic, dynamic, and radiative effects by in situ and remote sensing measurements over Amazonia. The ACRIDICON–CHUVA field observations were carried out in cooperation with the second intensive operating period of Green Ocean Amazon 2014/15 (GoAmazon2014/5). In this paper we focus on the airborne data measured on HALO, which was equipped with about 30 in situ and remote sensing instruments for meteorological, trace gas, aerosol, cloud, precipitation, and spectral solar radiation measurements. Fourteen research flights with a total duration of 96 flight hours were performed. Five scientific topics were pursued: 1) cloud vertical evolution and life cycle (cloud profiling), 2) cloud processing of aerosol particles and trace gases (inflow and outflow), 3) satellite and radar validation (cloud products), 4) vertical transport and mixing (tracer experiment), and 5) cloud formation over forested/deforested areas. Data were collected in near-pristine atmospheric conditions and in environments polluted by biomass burning and urban emissions. The paper presents a general introduction of the ACRIDICON– CHUVA campaign (motivation and addressed research topics) and of HALO with its extensive instrument package, as well as a presentation of a few selected measurement results acquired during the flights for some selected scientific topics.

Full access