Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: C. R. Chelius x
  • Refine by Access: All Content x
Clear All Modify Search
R. J. Kane Jr.
,
C. R. Chelius
, and
J. M. Fritsch

Abstract

Precipitation from 74 mesoscale convective complexes is examined to determine the total precipitation, areal extent, and characteristic precipitation pattern of an average convective complex. The relationship between the average precipitation pattern and the track of the centroid of the satellite-observed, cold-cloud shield is determined as an aid to forecasting. The amount and spatial distribution of precipitation during each stage (i.e., initiation, maturation and dissipation) of the average convective system's life cycle are presented, as well as the precipitation patterns for systems that form in particular synoptic environments. The precipitation characteristics of MCCs are compared to those from 32 other convective weather systems that are similar to MCCs but do not meet all the MCC-definition criteria.

Full access
J. M. Fritsch
,
R. J. Kane
, and
C. R. Chelius

Abstract

The contribution of precipitation from mesoscale convective weather systems to the warm-season (April–September) rainfall in the United States is evaluated. Both Mesoscale Convective Complexes (MCC's) and other large, long-lived mesoscale convective systems that do not quite meet Maddox's criteria for being termed an MCC are included in the evaluation. The distribution and geographical limits of the precipitation from the convective weather systems are constructed for the warm seasons of 1982, a “normal” year, and 1983, a drought year. Precipitation characteristics of the systems are compared for the 2 years to determine how large-scale drought patterns affect their precipitation production.

The frequency, precipitation characteristics and hydrologic ramifications of multiple occurrences, or series, of convective weather systems are presented and discussed. The temporal and spatial characteristics of the accumulated precipitation from a series of convective complexes is investigated and compared to that of Hurricane Alicia.

It is found that mesoscale convective weather systems account for approximately 30% to 70% of the warm-season (April–September) precipitation over much of the region between the Rocky Mountains and the Mississippi River. During the June through August period, their contribution is even larger. Moreover, series of convective weather systems are very likely the most prolific precipitation producer in the United States, rivaling and even exceeding that of hurricanes.

Changes in the large-scale circulation patterns affected the seasonal precipitation from mesoscale convective weather systems by altering the precipitation characteristics of individual systems. In particular, for the drought period of 1983, the frequency of the convective systems remained nearly the same as in the “normal” year (1982); however, the average precipitation area and the average volumetric production significantly decreased. Nevertheless, the rainfall that was produced by mesoscale convective weather systems in the drought year accounted for most of the precipitation received during the critical crop growth period.

It is concluded that mesoscale convective weather systems may be a crucial precipitation-producing deterrent to drought and an important mechanism for enhancing midsummer crop growth throughout the midwestern United States. Furthermore, because mesoscale convective weather systems account for such a large fraction of the warm-season precipitation, significant improvements in prediction of such systems would likely translate into significant improvements in quantitative precipitation forecast skill and corresponding improvements in hydrologic forecasts of runoff.

Full access