Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: C. R. Homeyer x
  • Refine by Access: All Content x
Clear All Modify Search
Zhe Feng
,
Robert A. Houze Jr.
,
L. Ruby Leung
,
Fengfei Song
,
Joseph C. Hardin
,
Jingyu Wang
,
William I. Gustafson Jr.
, and
Cameron R. Homeyer

ABSTRACT

The spatiotemporal variability and three-dimensional structures of mesoscale convective systems (MCSs) east of the U.S. Rocky Mountains and their large-scale environments are characterized across all seasons using 13 years of high-resolution radar and satellite observations. Long-lived and intense MCSs account for over 50% of warm season precipitation in the Great Plains and over 40% of cold season precipitation in the southeast. The Great Plains has the strongest MCS seasonal cycle peaking in May–June, whereas in the U.S. southeast MCSs occur year-round. Distinctly different large-scale environments across the seasons have significant impacts on the structure of MCSs. Spring and fall MCSs commonly initiate under strong baroclinic forcing and favorable thermodynamic environments. MCS genesis frequently occurs in the Great Plains near sunset, although convection is not always surface based. Spring MCSs feature both large and deep convection, with a large stratiform rain area and high volume of rainfall. In contrast, summer MCSs often initiate under weak baroclinic forcing, featuring a high pressure ridge with weak low-level convergence acting on the warm, humid air associated with the low-level jet. MCS genesis concentrates east of the Rocky Mountain Front Range and near the southeast coast in the afternoon. The strongest MCS diurnal cycle amplitude extends from the foothills of the Rocky Mountains to the Great Plains. Summer MCSs have the largest and deepest convective features, the smallest stratiform rain area, and the lowest rainfall volume. Last, winter MCSs are characterized by the strongest baroclinic forcing and the largest MCS precipitation features over the southeast. Implications of the findings for climate modeling are discussed.

Open access
Laura L. Pan
,
Kenneth P. Bowman
,
Elliot L. Atlas
,
Steve C. Wofsy
,
Fuqing Zhang
,
James F. Bresch
,
Brian A. Ridley
,
Jasna V. Pittman
,
Cameron R. Homeyer
,
Pavel Romashkin
, and
William A. Cooper

The Stratosphere–Troposphere Analyses of Regional Transport 2008 (START08) experiment investigated a number of important processes in the extratropical upper troposphere and lower stratosphere (UTLS) using the National Science Foundation (NSF)–NCAR Gulfstream V (GV) research aircraft. The main objective was to examine the chemical structure of the extratropical UTLS in relation to dynamical processes spanning a range of scales. The campaign was conducted during April–June 2008 from Broomfield, Colorado. A total of 18 research flights sampled an extensive geographical region of North America (25°–65°N, 80°–120°W) and a wide range of meteorological conditions. The airborne in situ instruments measured a comprehensive suite of chemical constituents and microphysical variables from the boundary layer to the lower stratosphere, with flights specifically designed to target key transport processes in the extratropical UTLS. The flights successfully investigated stratosphere–troposphere exchange (STE) processes, including the intrusion of tropospheric air into the stratosphere in association with the secondary tropopause and the intrusion of stratospheric air deep into the troposphere. The flights also sampled the influence of convective transport and lightning on the upper troposphere as well as the distribution of gravity waves associated with multiple sources, including fronts and topography. The aircraft observations are complemented by satellite observations and modeling. The measurements will be used to improve the representation of UTLS chemical gradients and transport in Chemistry–Climate models (CCMs). This article provides an overview of the experiment design and selected observational highlights.

Full access
Cameron R. Homeyer
,
Alexandre O. Fierro
,
Benjamin A. Schenkel
,
Anthony C. Didlake Jr.
,
Greg M. McFarquhar
,
Jiaxi Hu
,
Alexander V. Ryzhkov
,
Jeffrey B. Basara
,
Amanda M. Murphy
, and
Jonathan Zawislak

Abstract

Polarimetric radar observations from the NEXRAD WSR-88D operational radar network in the contiguous United States, routinely available since 2013, are used to reveal three prominent microphysical signatures in landfalling tropical cyclones: 1) hydrometeor size sorting within the eyewall convection, 2) vertical displacement of the melting layer within the inner core, and 3) dendritic growth layers within stratiform regions of the inner core. Size sorting signatures within eyewall convection are observed with greater frequency and prominence in more intense hurricanes, and are observed predominantly within the deep-layer environmental wind shear vector-relative quadrants that harbor the greatest frequency of deep convection (i.e., downshear and left-of-shear). Melting-layer displacements are shown that exceed 1 km in altitude compared to melting-layer altitudes in outer rainbands and are complemented by analyses of archived dropsonde data. Dendritic growth and attendant snow aggregation signatures in the inner core are found to occur more often when echo-top altitudes are low (≤10 km MSL), nearer the −15°C isotherm commonly associated with dendritic growth. These signatures, uniquely observed by polarimetric radar, provide greater insight into the physical structure and thermodynamic characteristics of tropical cyclones, which are important for improving rainfall estimation and the representation of tropical cyclones in numerical models.

Full access
L. L. Pan
,
E. L. Atlas
,
R. J. Salawitch
,
S. B. Honomichl
,
J. F. Bresch
,
W. J. Randel
,
E. C. Apel
,
R. S. Hornbrook
,
A. J. Weinheimer
,
D. C. Anderson
,
S. J. Andrews
,
S. Baidar
,
S. P. Beaton
,
T. L. Campos
,
L. J. Carpenter
,
D. Chen
,
B. Dix
,
V. Donets
,
S. R. Hall
,
T. F. Hanisco
,
C. R. Homeyer
,
L. G. Huey
,
J. B. Jensen
,
L. Kaser
,
D. E. Kinnison
,
T. K. Koenig
,
J.-F. Lamarque
,
C. Liu
,
J. Luo
,
Z. J. Luo
,
D. D. Montzka
,
J. M. Nicely
,
R. B. Pierce
,
D. D. Riemer
,
T. Robinson
,
P. Romashkin
,
A. Saiz-Lopez
,
S. Schauffler
,
O. Shieh
,
M. H. Stell
,
K. Ullmann
,
G. Vaughan
,
R. Volkamer
, and
G. Wolfe

Abstract

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

Full access