Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: Carlo Buontempo x
- Refine by Access: All Content x
Abstract
No Abstract available.
Abstract
No Abstract available.
Abstract
Simulations of water fluxes at high spatial resolution that consistently cover historical observations, seasonal forecasts, and future climate projections are key to providing climate services aimed at supporting operational and strategic planning, and developing mitigation and adaptation policies. The End-to-end Demonstrator for improved decision-making in the water sector in Europe (EDgE) is a proof-of-concept project funded by the Copernicus Climate Change Service program that addresses these requirements by combining a multimodel ensemble of state-of-the-art climate model outputs and hydrological models to deliver sectoral climate impact indicators (SCIIs) codesigned with private and public water sector stakeholders from three contrasting European countries. The final product of EDgE is a water-oriented information system implemented through a web application. Here, we present the underlying structure of the EDgE modeling chain, which is composed of four phases: 1) climate data processing, 2) hydrological modeling, 3) stakeholder codesign and SCII estimation, and 4) uncertainty and skill assessments. Daily temperature and precipitation from observational datasets, four climate models for seasonal forecasts, and five climate models under two emission scenarios are consistently downscaled to 5-km spatial resolution to ensure locally relevant simulations based on four hydrological models. The consistency of the hydrological models is guaranteed by using identical input data for land surface parameterizations. The multimodel outputs are composed of 65 years of historical observations, a 19-yr ensemble of seasonal hindcasts, and a century-long ensemble of climate impact projections. These unique, high-resolution hydroclimatic simulations and SCIIs provide an unprecedented information system for decision-making over Europe and can serve as a template for water-related climate services in other regions.
Abstract
Simulations of water fluxes at high spatial resolution that consistently cover historical observations, seasonal forecasts, and future climate projections are key to providing climate services aimed at supporting operational and strategic planning, and developing mitigation and adaptation policies. The End-to-end Demonstrator for improved decision-making in the water sector in Europe (EDgE) is a proof-of-concept project funded by the Copernicus Climate Change Service program that addresses these requirements by combining a multimodel ensemble of state-of-the-art climate model outputs and hydrological models to deliver sectoral climate impact indicators (SCIIs) codesigned with private and public water sector stakeholders from three contrasting European countries. The final product of EDgE is a water-oriented information system implemented through a web application. Here, we present the underlying structure of the EDgE modeling chain, which is composed of four phases: 1) climate data processing, 2) hydrological modeling, 3) stakeholder codesign and SCII estimation, and 4) uncertainty and skill assessments. Daily temperature and precipitation from observational datasets, four climate models for seasonal forecasts, and five climate models under two emission scenarios are consistently downscaled to 5-km spatial resolution to ensure locally relevant simulations based on four hydrological models. The consistency of the hydrological models is guaranteed by using identical input data for land surface parameterizations. The multimodel outputs are composed of 65 years of historical observations, a 19-yr ensemble of seasonal hindcasts, and a century-long ensemble of climate impact projections. These unique, high-resolution hydroclimatic simulations and SCIIs provide an unprecedented information system for decision-making over Europe and can serve as a template for water-related climate services in other regions.
Abstract
The Copernicus Climate Change Service (C3S) provides open and free access to state-of-the-art climate data and tools for use by governments, public authorities, and private entities around the world. It is fully funded by the European Union and implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) together with public and private entities in Europe and elsewhere. With over 120,000 registered users worldwide, C3S has rapidly become an authoritative climate service in Europe and beyond, delivering quality-assured climate data and information based on the latest science. Established in 2014, C3S became fully operational in 2018 with the launch of its Climate Data Store, a powerful cloud-based infrastructure providing access to a vast range of global and regional information, including climate data records derived from observations, the latest ECMWF reanalyses, seasonal forecast data from multiple providers, and a large collection of climate projections. The system has been designed to be accessible to nonspecialists, offering a uniform interface to all data and documentation as well as a Python-based toolbox that can be used to process and use the data online. C3S publishes European State of the Climate reports annually for policy-makers, as well as monthly and annual summaries that are widely disseminated in the international press. Together with users, C3S develops customized indicators of climate impacts in economic sectors such as energy, water management, agriculture, insurance, health, and urban planning. C3S works closely with national climate service providers, satellite agencies, and other stakeholders on the improvement of its data and services.
Abstract
The Copernicus Climate Change Service (C3S) provides open and free access to state-of-the-art climate data and tools for use by governments, public authorities, and private entities around the world. It is fully funded by the European Union and implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) together with public and private entities in Europe and elsewhere. With over 120,000 registered users worldwide, C3S has rapidly become an authoritative climate service in Europe and beyond, delivering quality-assured climate data and information based on the latest science. Established in 2014, C3S became fully operational in 2018 with the launch of its Climate Data Store, a powerful cloud-based infrastructure providing access to a vast range of global and regional information, including climate data records derived from observations, the latest ECMWF reanalyses, seasonal forecast data from multiple providers, and a large collection of climate projections. The system has been designed to be accessible to nonspecialists, offering a uniform interface to all data and documentation as well as a Python-based toolbox that can be used to process and use the data online. C3S publishes European State of the Climate reports annually for policy-makers, as well as monthly and annual summaries that are widely disseminated in the international press. Together with users, C3S develops customized indicators of climate impacts in economic sectors such as energy, water management, agriculture, insurance, health, and urban planning. C3S works closely with national climate service providers, satellite agencies, and other stakeholders on the improvement of its data and services.
Abstract
If climate services are to lead to effective use of climate information in decision-making to enable the transition to a climate-smart, climate-ready world, then the question of trust in the products and services is of paramount importance. The Copernicus Climate Change Service (C3S) has been actively grappling with how to build such trust: provision of demonstrably independent assessments of the quality of products, which was deemed an important element in such trust-building processes. C3S provides access to essential climate variables (ECVs) from multiple sources to a broad set of users ranging from scientists to private companies and decision-makers. Here we outline the approach undertaken to coherently assess the quality of a suite of observation- and reanalysis-based ECV products covering the atmosphere, ocean, land, and cryosphere. The assessment is based on four pillars: basic data checks, maturity of the datasets, fitness for purpose (scientific use cases and climate studies), and guidance to users. It is undertaken independently by scientific experts and presented alongside the datasets in a fully traceable, replicable, and transparent manner. The methodology deployed is detailed, and example assessments are given. These independent scientific quality assessments are intended to guide users to ensure they use tools and datasets that are fit for purpose to answer their specific needs rather than simply use the first product they alight on. This is the first such effort to develop and apply an assessment framework consistently to all ECVs. Lessons learned and future perspectives are outlined to potentially improve future assessment activities and thus climate services.
Abstract
If climate services are to lead to effective use of climate information in decision-making to enable the transition to a climate-smart, climate-ready world, then the question of trust in the products and services is of paramount importance. The Copernicus Climate Change Service (C3S) has been actively grappling with how to build such trust: provision of demonstrably independent assessments of the quality of products, which was deemed an important element in such trust-building processes. C3S provides access to essential climate variables (ECVs) from multiple sources to a broad set of users ranging from scientists to private companies and decision-makers. Here we outline the approach undertaken to coherently assess the quality of a suite of observation- and reanalysis-based ECV products covering the atmosphere, ocean, land, and cryosphere. The assessment is based on four pillars: basic data checks, maturity of the datasets, fitness for purpose (scientific use cases and climate studies), and guidance to users. It is undertaken independently by scientific experts and presented alongside the datasets in a fully traceable, replicable, and transparent manner. The methodology deployed is detailed, and example assessments are given. These independent scientific quality assessments are intended to guide users to ensure they use tools and datasets that are fit for purpose to answer their specific needs rather than simply use the first product they alight on. This is the first such effort to develop and apply an assessment framework consistently to all ECVs. Lessons learned and future perspectives are outlined to potentially improve future assessment activities and thus climate services.