Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Carrie Langston x
  • All content x
Clear All Modify Search
Carrie Langston, Jian Zhang, and Kenneth Howard

Abstract

Communities and many industries are affected by severe weather and have a need for real-time accurate Weather Surveillance Radar-1988 Doppler (WSR-88D) data spanning several regions. To fulfill this need the National Severe Storms Laboratory has developed a Four-Dimensional Dynamic Grid (4DDG) to accurately represent discontinuous radar reflectivity data over a continuous 4D domain. The objective is to create a seamless, rapidly updating radar mosaic that is well suited for use by forecasters in addition to advance radar applications such as qualitative precipitation estimates. Several challenges are associated with creating a 3D radar mosaic given the nature of radar data and the spherical coordinates of radar observations. The 4DDG uses spatial and temporal weighting schemes to overcome these challenges, with the intention of applying minimal smoothing to the radar data. Previous multiple radar mosaics functioned in two or three dimensions using a variety of established weighting schemes. The 4DDG has the advantage of temporal weighting to smooth radar observations over time. Using an exponentially decaying weighting scheme, this paper will examine different weather scenarios and show the effects of temporal smoothing using different time scales. Specifically, case examples of the 4DDG approach involving a rapidly evolving convective event and a slowly developing stratiform weather regime are considered.

Full access
Jian Zhang, Carrie Langston, and Kenneth Howard

Abstract

The occurrence of a bright band, a layer of enhanced reflectivity due to melting of aggregated snow, increases uncertainties in radar-based quantitative precipitation estimation (QPE). The height of the brightband layer is an indication of 0°C isotherm and can be useful in identifying areas of potential icing for aviation and in the data assimilation for numerical weather prediction (NWP). Extensive analysis of vertical profiles of reflectivity (VPRs) derived from the Weather Surveillance Radar-1988 Doppler (WSR-88D) base level data showed that the brightband signature could be easily identified from the VPRs. As a result, an automated brightband identification (BBID) scheme has been developed. The BBID algorithm can determine from a volume scan mean VPR and a background freezing level height from a numerical weather prediction model whether a bright band exists and the height of the brightband layer. The paper presents a description of the BBID scheme and evaluation results from a large dataset from WSR-88D radars in different geographical regions and seasons.

Full access
Youcun Qi, Jian Zhang, Brian Kaney, Carrie Langston, and Kenneth Howard

Abstract

Quantitative precipitation estimation (QPE) in the West Coast region of the United States has been a big challenge for Weather Surveillance Radar-1988 Doppler (WSR-88D) because of severe blockages caused by the complex terrain. The majority of the heavy precipitation in the West Coast region is associated with strong moisture flux from the Pacific that interacts with the coastal mountains. Such orographic enhancement of precipitation occurs at low levels and cannot be observed well by WSR-88D because of severe blockages. Specifically, the radar beam either samples too high above the ground or misses the orographic enhancement at lower levels, or the beam broadens with range and cannot adequately resolve vertical variations of the reflectivity structure. The current study developed an algorithm that uses S-band Precipitation Profiler (S-PROF) radar observations in northern California to improve WSR-88D QPEs in the area. The profiler data are used to calculate two sets of reference vertical profiles of reflectivity (RVPRs), one for the coastal mountains and another for the Sierra Nevada. The RVPRs are then used to correct the WSR-88D QPEs in the corresponding areas. The S-PROF–based VPR correction methodology (S-PROF-VPR) has taken into account orographic processes and radar beam broadenings with range. It is tested using three heavy rain events and is found to provide significant improvements over the operational radar QPE.

Full access
Jian Zhang, Youcun Qi, Carrie Langston, Brian Kaney, and Kenneth Howard

Abstract

High-resolution, accurate quantitative precipitation estimation (QPE) is critical for monitoring and prediction of flash floods and is one of the most important drivers for hydrological forecasts. Rain gauges provide a direct measure of precipitation at a point, which is generally more accurate than remotely sensed observations from radar and satellite. However, high-quality, accurate precipitation gauges are expensive to maintain, and their distributions are too sparse to capture gradients of convective precipitation that may produce flash floods. Weather radars provide precipitation observations with significantly higher resolutions than rain gauge networks, although the radar reflectivity is an indirect measure of precipitation and radar-derived QPEs are subject to errors in reflectivity–rain rate (ZR) relationships. Further, radar observations are prone to blockages in complex terrain, which often result in a poor sampling of orographically enhanced precipitation. The current study aims at a synergistic approach to QPE by combining radar, rain gauge, and an orographic precipitation climatology. In the merged QPE, radar data depict high-resolution spatial distributions of the precipitation and rain gauges provide accurate precipitation measurements that correct potential biases in the radar QPE. The climatology provides a high-resolution background of the spatial precipitation distribution in the complex terrain where radar coverage is limited or nonexistent. The merging algorithm was tested on heavy precipitation events in different areas of the United States and provided a superior QPE to the individual components. The new QPE algorithm is fully automated and can be easily implemented in an operational system.

Full access
Lin Tang, Jian Zhang, Carrie Langston, John Krause, Kenneth Howard, and Valliappa Lakshmanan

Abstract

Polarimetric radar observations provide information regarding the shape and size of scatterers in the atmosphere, which help users to differentiate between precipitation and nonprecipitation radar echoes. Identifying and removing nonprecipitation echoes in radar reflectivity fields is one critical step in radar-based quantitative precipitation estimation. An automated algorithm based on reflectivity, correlation coefficient, and temperature data is developed to perform reflectivity data quality control through a set of physically based rules. The algorithm was tested with a large number of real data cases across different geographical regions and seasons and showed a high accuracy (Heidke skill score of 0.83) in segregating precipitation and nonprecipitation echoes. The algorithm was compared with two other operational and experimental reflectivity quality control methodologies and showed a more effective removal of nonprecipitation echoes and a higher computational efficiency. The current methodology also demonstrated a satisfactory performance in a real-time national multiradar and multisensor system.

Full access
Jian Zhang, Lin Tang, Stephen Cocks, Pengfei Zhang, Alexander Ryzhkov, Kenneth Howard, Carrie Langston, and Brian Kaney

Abstract

A new dual-polarization (DP) radar synthetic quantitative precipitation estimation (QPE) product was developed using a combination of specific attenuation A, specific differential phase K DP, and reflectivity Z to calculate the precipitation rate R. Specific attenuation has advantages of being insensitive to systematic biases in Z and differential reflectivity Z DR due to partial beam blockage, attenuation, and calibration while more linearly related to R than other radar variables. However, the R(A) relationship is not applicable in areas containing ice. Therefore, the new DP QPE applies R(A) in areas where radar is observing pure rain, R(K DP) in regions potentially containing hail, and R(Z) elsewhere. Further, an evaporation correction was applied to minimize false light precipitation related to virga. The new DP QPE was evaluated in real time over the conterminous United States and showed significant improvements over previous radar QPE techniques that were based solely on R(Z) relationships. The improvements included reduced dry biases in heavy to extreme precipitation during the warm season. The new DP QPE also reduced errors and spatial discontinuities in regions impacted by partial beam blockage. Further, the new DP QPE reduced wet bias for scattered light precipitation in the southwest and north central United States where there is significant boundary layer evaporation.

Restricted access
Steven M. Martinaitis, Heather M. Grams, Carrie Langston, Jian Zhang, and Kenneth Howard

Abstract

Precipitation values estimated by radar are assumed to be the amount of precipitation that occurred at the surface, yet this notion is inaccurate. Numerous atmospheric and microphysical processes can alter the precipitation rate between the radar beam elevation and the surface. One such process is evaporation. This study determines the applicability of integrating an evaporation correction scheme for real-time radar-derived mosaicked precipitation rates to reduce quantitative precipitation estimate (QPE) overestimation and to reduce the coverage of false surface precipitation. An evaporation technique previously developed for large-scale numerical modeling is applied to Multi-Radar Multi-Sensor (MRMS) precipitation rates through the use of 2D and 3D numerical weather prediction (NWP) atmospheric parameters as well as basic radar properties. Hourly accumulated QPE with evaporation adjustment compared against gauge observations saw an average reduction of the overestimation bias by 57%–76% for rain events and 42%–49% for primarily snow events. The removal of false surface precipitation also reduced the number of hourly gauge observations that were considered as “false zero” observations by 52.1% for rain and 38.2% for snow. Optimum computational efficiency was achieved through the use of simplified equations and hourly 10-km horizontal resolution NWP data. The run time for the evaporation correction algorithm is 6–7 s.

Full access
Lin Tang, Jian Zhang, Micheal Simpson, Ami Arthur, Heather Grams, Yadong Wang, and Carrie Langston

Abstract

The Multi-Radar-Multi-Sensor (MRMS) system was transitioned into operations at the National Centers for Environmental Prediction in the fall of 2014. It provides high-quality and high-resolution severe weather and precipitation products for meteorology, hydrology, and aviation applications. Among processing modules, the radar data quality control (QC) plays a critical role in effectively identifying and removing various nonhydrometeor radar echoes for accurate quantitative precipitation estimation (QPE). Since its initial implementation in 2014, the radar QC has undergone continuous refinements and enhancements to ensure its robust performance across seasons and all regions in the continental United States and southern Canada. These updates include 1) improved melting-layer delineation, 2) clearance of wind farm contamination, 3) mitigation of corrupt data impacts due to hardware issues, 4) mitigation of sun spikes, and 5) mitigation of residual ground/lake/sea clutter due to sidelobe effects and anomalous propagation. This paper provides an overview of the MRMS radar data QC enhancements since 2014.

Restricted access
Steven M. Martinaitis, Andrew P. Osborne, Micheal J. Simpson, Jian Zhang, Kenneth W. Howard, Stephen B. Cocks, Ami Arthur, Carrie Langston, and Brian T. Kaney

Abstract

Weather radars and gauge observations are the primary observations to determine the coverage and magnitude of precipitation; however, radar and gauge networks have significant coverage gaps, which can underrepresent or even miss the occurrence of precipitation. This is especially noticeable in mountainous regions and in shallow precipitation regimes. The following study presents a methodology to improve spatial representations of precipitation by seamlessly blending multiple precipitation sources within the Multi-Radar Multi-Sensor (MRMS) system. A high spatiotemporal resolution multisensor merged quantitative precipitation estimation (QPE) product (MSQPE) is generated by using gauge-corrected radar QPE as a primary precipitation source with a combination of hourly gauge observations, monthly precipitation climatologies, numerical weather prediction short-term precipitation forecasts, and satellite observations to use in areas of insufficient radar coverage. The merging of the precipitation sources is dependent upon radar coverage based on an updated MRMS radar quality index, surface and atmospheric conditions, topography, gauge locations, and precipitation values. Evaluations of the MSQPE product over the western United States resulted in improved statistical measures over its individual input precipitation sources, particularly the locally gauge-corrected radar QPE. The MSQPE scheme demonstrated its ability to sufficiently fill in areas where radar alone failed to detect precipitation due to significant beam blockage or poor coverage while minimizing the generation of false precipitation and underestimation biases that resulted from radar overshooting precipitation.

Restricted access
Jian Zhang, Kenneth Howard, Carrie Langston, Steve Vasiloff, Brian Kaney, Ami Arthur, Suzanne Van Cooten, Kevin Kelleher, David Kitzmiller, Feng Ding, Dong-Jun Seo, Ernie Wells, and Chuck Dempsey

The National Mosaic and Multi-sensor QPE (Quantitative Precipitation Estimation), or “NMQ”, system was initially developed from a joint initiative between the National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, the Federal Aviation Administration's Aviation Weather Research Program, and the Salt River Project. Further development has continued with additional support from the National Weather Service (NWS) Office of Hydrologic Development, the NWS Office of Climate, Water, and Weather Services, and the Central Weather Bureau of Taiwan. The objectives of NMQ research and development (R&D) are 1) to develop a hydrometeorological platform for assimilating different observational networks toward creating high spatial and temporal resolution multisensor QPEs for f lood warnings and water resource management and 2) to develop a seamless high-resolution national 3D grid of radar reflectivity for severe weather detection, data assimilation, numerical weather prediction model verification, and aviation product development.

Through about ten years of R&D, a real-time NMQ system has been implemented (http://nmq.ou.edu). Since June 2006, the system has been generating high-resolution 3D reflectivity mosaic grids (31 vertical levels) and a suite of severe weather and QPE products in real-time for the conterminous United States at a 1-km horizontal resolution and 2.5 minute update cycle. The experimental products are provided in real-time to end users ranging from government agencies, universities, research institutes, and the private sector and have been utilized in various meteorological, aviation, and hydrological applications. Further, a number of operational QPE products generated from different sensors (radar, gauge, satellite) and by human experts are ingested in the NMQ system and the experimental products are evaluated against the operational products as well as independent gauge observations in real time.

The NMQ is a fully automated system. It facilitates systematic evaluations and advances of hydrometeorological sciences and technologies in a real-time environment and serves as a test bed for rapid science-to-operation infusions. This paper describes scientific components of the NMQ system and presents initial evaluation results and future development plans of the system.

Full access