Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Casey D. Burleyson x
  • All content x
Clear All Modify Search
Casey D. Burleyson and Sandra E. Yuter

Abstract

The spatial patterns of subtropical marine stratocumulus cloud fraction variability on diurnal time scales are examined using high-temporal-resolution cloud masks that are based on 30-min, 4 km × 4 km geosynchronous infrared data for 2003–10. This dataset permits comparison of the characteristics of variability in low cloud fraction among the three subtropical marine stratocumulus regions in the northeastern (NE) Pacific, southeastern (SE) Pacific, and SE Atlantic Oceans. In all three regions, the largest diurnal cycles and earliest time of cloud breakup occur on the edges of the cloud field where cloud fractions are generally lower. The rate at which the cloud breaks up during the day is tied to the starting cloud fraction at dawn, which determines the amount of longwave cooling that is initially available to offset shortwave radiative fluxes during the day. The maximum rate of cloud breakup occurs near 1200 LT. Cloud fraction begins to increase by 1600 LT (before the sun sets) and reaches its maximum value just before dawn. The diurnal-cycle characteristics of the SE Pacific and SE Atlantic marine stratocumulus cloud decks are more similar to each other than to those in the NE Pacific. The NE Pacific cloud deck has a smaller-amplitude diurnal cycle, slower rates of cloud breakup during the day for a given cloud fraction at dawn, and a higher probability of cloud breakup overnight.

Full access
Casey D. Burleyson and Sandra E. Yuter

Abstract

This paper presents an analysis of subtropical marine stratocumulus cloud fraction variability using a 30-min and 3° × 3° cloud fraction dataset from 2003 to 2010. Each of the three subtropical marine stratocumulus regions has distinct diurnal characteristics, but the southeast (SE) Pacific and SE Atlantic are more similar to each other than to the northeast (NE) Pacific. The amplitude and season-to-season diurnal cycle variations are larger in the Southern Hemisphere regions than in the NE Pacific. Net overnight changes in cloud fraction on 3° × 3° scales are either positive or neutral >77% of the time in the NE Pacific and >88% of the time in the SE Pacific and SE Atlantic. Cloud fraction often increases to 100% by dawn when cloud fraction at dusk is >30%. In the SE Pacific and SE Atlantic, a typical decrease in cloud area (median ≤ −5.7 × 105 km2) during the day is equivalent to 25% or more of the annual-mean cloud deck area. Time series for 3° × 3° areas where cloud fraction was ≥90% sometime overnight and <60% at dawn, such as would result from nocturnal formation of pockets of open cells (POCs), only occur 1.5%, 1.6%, and 3.3% of the time in the SE Pacific, SE Atlantic, and NE Pacific, respectively. Comparison of cloud fraction changes to ship-based radar and satellite-derived precipitation intensity and area measurements shows a lack of sensitivity of cloud fraction to drizzle on time scales of 1–3 h and spatial scales of 100–300 km.

Full access
Casey D. Burleyson, Charles N. Long, and Jennifer M. Comstock

Abstract

Cloud radiative effects are examined using long-term datasets collected at the U.S. Department of Energy’s three Atmospheric Radiation Measurement Program Climate Research Facilities in the tropical western Pacific Ocean. The surface radiation budget, cloud populations, and cloud radiative effects are quantified by partitioning the data by cloud type, time of day, and large-scale modes of variability such as El Niño–Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin, Australia. The novel aspect of this analysis is the breakdown of aggregate cloud radiative effects by cloud type across the diurnal cycle. The Nauru Island (Republic of Nauru) cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability, whereas the cloud populations over Manus Island (Papua New Guinea) shift only slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon-related variations. When present, deeper convective clouds have a strong influence on the amount of radiation that reaches the surface. Their limited frequency reduces their aggregate radiative impact, however. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. The observations are used to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget when compared with biases in the timing of the diurnal cycle of cloud frequency. These results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

Full access
Hailong Wang, Casey D. Burleyson, Po-Lun Ma, Jerome D. Fast, and Philip J. Rasch

Abstract

Long-term Atmospheric Radiation Measurement (ARM) datasets collected at the three tropical western Pacific (TWP) sites are used to evaluate the ability of the Community Atmosphere Model (CAM5) to simulate the various types of clouds, their seasonal and diurnal variations, and their impact on surface radiation. A number of CAM5 simulations are conducted at various horizontal grid spacing (around 2°, 1°, 0.5°, and 0.25°) with meteorological constraints from analysis or reanalysis. Model biases in the seasonal cycle of cloudiness are found to be weakly dependent on model resolution. Positive biases (up to 20%) in the annual mean total cloud fraction appear mostly in stratiform ice clouds. Higher-resolution simulations do reduce the positive bias in ice clouds, but they inadvertently increase the negative biases in convective clouds and low-level liquid clouds, leading to a positive bias in annual mean shortwave fluxes at the sites, as high as 65 W m−2 in the 0.25° simulation. Such resolution-dependent biases in clouds can adversely lead to biases in ambient thermodynamic properties and, in turn, produce feedback onto clouds. Both the model and observations show distinct diurnal cycles in total, stratiform, and convective cloud fractions; however, they are out of phase by 12 h and the biases vary by site. The results suggest that biases in deep convection affect the vertical distribution and diurnal cycle of stratiform clouds through the transport of vapor and/or the detrainment of liquid and ice. The approach used here can be easily adapted for the evaluation of new parameterizations being developed for CAM5 or other global or regional models.

Open access
Simon P. de Szoeke, Sandra Yuter, David Mechem, Chris W. Fairall, Casey D. Burleyson, and Paquita Zuidema

Abstract

Widespread stratocumulus clouds were observed on nine transects from seven research cruises to the southeastern tropical Pacific Ocean along 20°S, 75°–85°W in October–November of 2001–08. The nine transects sample a unique combination of synoptic and interannual variability affecting the clouds; their ensemble diagnoses longitude–vertical sections of the atmosphere, diurnal cycles of cloud properties and drizzle statistics, and the effect of stratocumulus clouds on surface radiation. Mean cloud fraction was 0.88, and 67% of 10-min overhead cloud fraction observations were overcast. Clouds cleared in the afternoon [1500 local time (LT)] to a minimum of fraction of 0.7. Precipitation radar found strong drizzle with reflectivity above 40 dBZ.

Cloud-base (CB) heights rise with longitude from 1.0 km at 75°W to 1.2 km at 85°W in the mean, but the slope varies from cruise to cruise. CB–lifting condensation level (LCL) displacement, a measure of decoupling, increases westward. At night CB–LCL is 0–200 m and increases 400 m from dawn to 1600 LT, before collapsing in the evening.

Despite zonal gradients in boundary layer and cloud vertical structure, surface radiation and cloud radiative forcing are relatively uniform in longitude. When present, clouds reduce solar radiation by 160 W m−2 and radiate 70 W m−2 more downward longwave radiation than clear skies. Coupled Model Intercomparison Project phase 3 (CMIP3) simulations of the climate of the twentieth century show 40 ± 20 W m−2 too little net cloud radiative cooling at the surface. Simulated clouds have correct radiative forcing when present, but models have ~50% too few clouds.

Full access
Samson M. Hagos, Zhe Feng, Casey D. Burleyson, Chun Zhao, Matus N. Martini, and Larry K. Berg

Abstract

Two Madden–Julian oscillation (MJO) episodes observed during the 2011 Atmospheric Radiation Measurement Program MJO Investigation Experiment (AMIE)/DYNAMO field campaign are simulated using a regional model with various cumulus parameterizations, a regional cloud-permitting model, and a global variable-resolution model with a high-resolution region centered over the tropical Indian Ocean. Model biases in relationships relevant to existing instability theories of MJO are examined and their relative contributions to the overall model errors are quantified using a linear statistical model. The model simulations capture the observed approximately log-linear relationship between moisture saturation fraction and precipitation, but precipitation associated with the given saturation fraction is overestimated especially at low saturation fraction values. This bias is a major contributor to the excessive precipitation during the suppressed phase of MJO. After accounting for this bias using a linear statistical model, the spatial and temporal structures of the model-simulated MJO episodes are much improved, and what remains of the biases is strongly correlated with biases in saturation fraction. The excess precipitation bias during the suppressed phase of the MJO episodes is accompanied by excessive column-integrated radiative forcing and surface evaporation. A large portion of the bias in evaporation is related to biases in wind speed, which are correlated with those of precipitation. These findings suggest that the precipitation bias sustains itself at least partly by cloud radiative feedbacks and convection–surface wind interactions.

Full access
Casey D. Burleyson, Simon P. de Szoeke, Sandra E. Yuter, Matt Wilbanks, and W. Alan Brewer

Abstract

The diurnal cycle of marine stratocumulus in cloud-topped boundary layers is examined using ship-based meteorological data obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx). The high temporal and spatial continuity of the ship data, as well as the 31-day sample size, allows the diurnal transition in degree of coupling of the stratocumulus-topped boundary layer to be resolved. The amplitude of diurnal variation was comparable to the magnitude of longitudinal differences between regions east and west of 80°W for most of the cloud, surface, and precipitation variables examined. The diurnal cycle of precipitation is examined in terms of areal coverage, number of drizzle cells, and estimated rain rate. East of 80°W, the drizzle cell frequency and drizzle area peaks just prior to sunrise. West of 80°W, total drizzle area peaks at 0300 local solar time (LST), 2–3 h before sunrise. Peak drizzle cell frequency is 3 times higher west of 80°W compared to east of 80°W. The waning of drizzle several hours prior to the ramp up of shortwave fluxes may be related to the higher peak drizzle frequencies in the west. The ensemble effect of localized subcloud evaporation of precipitation may make drizzle a self-limiting process where the areal density of drizzle cells is sufficiently high. The daytime reduction in vertical velocity variance in a less coupled boundary layer is accompanied by enhanced stratification of potential temperature and a buildup of moisture near the surface.

Full access
Casey D. Burleyson, Samson M. Hagos, Zhe Feng, Brandon W. J. Kerns, and Daehyun Kim

Abstract

The characteristics of Madden–Julian oscillation (MJO) events that strengthen and weaken over the Maritime Continent (MC) are examined. The real-time multivariate MJO (RMM) index is used to assess changes in global MJO amplitude over the MC. The MJO weakens at least twice as often as it strengthens over the MC, with weakening MJOs being twice as likely during El Niño compared to La Niña years and the reverse for strengthening events. MJO weakening shows a pronounced seasonal cycle that has not been previously documented. During the Northern Hemisphere (NH) summer and fall the RMM index can strengthen over the MC. MJOs that approach the MC during the NH winter typically weaken according to the RMM index. This seasonal cycle corresponds to whether the MJO crosses the MC primarily north or south of the equator. Because of the seasonal cycle, weakening MJOs are characterized by positive sea surface temperature and moist-static energy anomalies in the Southern Hemisphere (SH) of the MC compared to strengthening events. Analysis of the outgoing longwave radiation (OLR) MJO index (OMI) shows that MJO precipitation weakens when it crosses the MC along the equator. A possible explanation of this based on previous results is that the MJO encounters more landmasses and taller mountains when crossing along the equator or in the SH. The new finding of a seasonal cycle in MJO weakening over the MC highlights the importance of sampling MJOs throughout the year in future field campaigns designed to study MJO–MC interactions.

Full access
Casey D. Burleyson, Zhe Feng, Samson M. Hagos, Jerome Fast, Luiz A. T. Machado, and Scot T. Martin

Abstract

The isolation of the Amazon rain forest makes it challenging to observe precipitation forming there, but it also creates a natural laboratory to study anthropogenic impacts on clouds and precipitation in an otherwise pristine environment. Observations were collected upwind and downwind of Manaus, Brazil, during the “Observations and Modeling of the Green Ocean Amazon 2014–2015” experiment (GoAmazon2014/5). Besides aircraft, most of the observations were point measurements made in a spatially heterogeneous environment, making it hard to distinguish anthropogenic signals from naturally occurring spatial variability. In this study, 15 years of satellite data are used to examine the spatial and temporal variability of deep convection around the GoAmazon2014/5 sites using cold cloud tops (infrared brightness temperatures colder than 240 K) as a proxy for deep convection. During the rainy season, convection associated with the inland propagation of the previous day’s sea-breeze front is in phase with the diurnal cycle of deep convection near Manaus but is out of phase a few hundred kilometers to the east and west. Convergence between the river breezes and the easterly trade winds generates afternoon convection up to 10% more frequently (on average ~4 mm day−1 more intense rainfall) at the GoAmazon2014/5 sites east of the Negro River (T0e, T0t/k, and T1) relative to the T3 site, which was located west of the river. In general, the annual and diurnal cycles of precipitation during 2014 were similar to climatological values that are based on satellite data from 2000 to 2013.

Full access
Matt C. Wilbanks, Sandra E. Yuter, Simon P. de Szoeke, W. Alan Brewer, Matthew A. Miller, Andrew M. Hall, and Casey D. Burleyson

Abstract

Density currents (i.e., cold pools or outflows) beneath marine stratocumulus clouds are characterized using 30 days of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An air density increase criterion applied to the Improved Meteorological (IMET) sensor data identified 71 density current front, core (peak density), and tail (dissipating) zones. The similarity in speeds of the mean density current propagation speed (1.8 m s−1) and the mean cloud-level advection relative to the surface layer wind (1.9 m s−1) allowed drizzle cells to deposit elongated density currents in their wakes. Scanning Doppler lidar captured prefrontal updrafts with a mean intensity of 0.91 m s−1 and an average vertical extent of 800 m. Updrafts were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. The observed density currents were 5–10 times thinner and weaker than typical continental thunderstorm cold pools. Nearly 90% of density currents were identified when C-band radar estimated areal average rain rates exceeded 1 mm day−1 over a 30-km diameter. Rather than peaking when rain rates were highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurred with shallow subcloud dry and stable layers. The dry layers may have contributed to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occurred in a large region of predominantly open cells but also occurred in regions of closed cells.

Full access