Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Catherine Finley x
  • Refine by Access: All Content x
Clear All Modify Search
Matthew L. Grzych, Bruce D. Lee, and Catherine A. Finley

Abstract

Data collected during Project Analysis of the Near-Surface Wind and Environment along the Rear-flank of Supercells (ANSWERS) provided an opportunity to test recently published associations between rear-flank downdraft (RFD) thermodynamic characteristics and supercell tornadic activity on a set of 10 events from the northern plains. On average, RFDs associated with tornadic supercells had surface equivalent potential temperature and virtual potential temperature values only slightly lower than storm inflow values. RFDs associated with nontornadic supercells had mean group equivalent potential temperature and virtual potential temperature values that were colder relative to storm inflow values than their respective tornadic counterparts. Additionally, the analysis revealed that RFDs associated with tornadic supercells had higher CAPE and lower convective inhibition than the RFDs of nontornadic supercells, on average. The results of this study provide further support for the general concept that a thermodynamic delineation generally exists between the RFDs of tornadic and nontornadic supercells.

Full access
Bruce D. Lee, Catherine A. Finley, and Timothy M. Samaras

Abstract

Data collected by a mesonet within the near-tornado environment and in the Tipton tornado on 29 May 2008 provided a rare opportunity to analyze rear-flank downdraft (RFD) outflow properties closely bounding a tornado and to characterize parcel thermodynamics being ingested into a tornado from the rear-flank downdraft. Parcels moving into the tornado on its right flank had very small negative buoyancy and considerable potential buoyancy. Measurements within and very near the tornado showed similar buoyancy characteristics to the storm inflow. Analyzed surface divergence and videographic evidence indicated that the RFD outflow just to the right and wrapping in front of the tornado was supported by parcels moving out of a narrow downdraft bordering the right flank of the tornado. Surface flow field analysis showed that parcels moved out of the downdraft-associated divergence region and into the right side of, as well as in front of, the tornado. An internal RFD surge boundary was positioned roughly 0.5 km in front of the eastern edge of the analyzed divergence region and implied downdraft.

The broader RFD outflow thermodynamic characteristics were consistent with recent research with only small negative buoyancy and substantial potential buoyancy; however, convective inhibition was considerably higher than typically found in other tornadic cases. This latter characteristic was emblematic of the broader storm environment on this day. Parcels making up the RFD outflow originated from low-levels, consistent with recent findings for tornadic rear-flank downdrafts and in contrast to past historical indications for the rear-flank downdraft source region.

Full access
Catherine A. Finley, W. R. Cotton, and R. A. Pielke Sr.

Abstract

A nested grid primitive equation model (RAMS version 3b) was used to simulate a high-precipitation (HP) supercell, which produced two weak tornadoes. Six telescoping nested grids allowed atmospheric flows ranging from the synoptic scale down to the tornadic scale to be represented in the simulation. All convection in the simulation was initiated with resolved vertical motion and subsequent condensation–latent heating from the model microphysics; no warm bubbles or cumulus parameterizations were used.

Part I of this study focuses on the simulated storm evolution and its transition into a bow echo. The simulation initially produced a classic supercell that developed at the intersection between a stationary front and an outflow boundary. As the simulation progressed, additional storms developed and interacted with the main storm to produce a single supercell. This storm had many characteristics of an HP supercell and eventually evolved into a bow echo with a rotating comma-head structure. An analysis of the storm's transition into a bow echo revealed that the interaction between convective cells triggered a series of events that played a crucial role in the transition.

The simulated storm structure and evolution differed significantly from that of classic supercells produced by idealized simulations. Several vertical vorticity and condensate maxima along the flanking line moved northward and merged into the mesocyclone at the northern end of the convective line during the bow echo transition. Vorticity budget calculations in the mesocyclone showed that vorticity advection from the flanking line into the mesocyclone was the largest positive vorticity tendency term just prior to and during the early phase of the transition in both the low- and midlevel mesocyclone, and remained a significant positive tendency in the midlevel mesocyclone throughout the bow echo transition. This indicates that the flanking line was a source of vertical vorticity for the mesocyclone, and may explain how the mesocyclone was maintained in the HP supercell even though it was completely embedded in heavy precipitation.

The simulated supercell also produced two weak tornadoes. The evolution of the simulated tornadoes and an analysis of the tornadogenesis process will be presented in Part II.

Full access
Leigh Orf, Robert Wilhelmson, Bruce Lee, Catherine Finley, and Adam Houston

Abstract

Tornadoes are among nature’s most destructive forces. The most violent, long-lived tornadoes form within supercell thunderstorms. Tornadoes ranked EF4 and EF5 on the Enhanced Fujita scale that exhibit long paths are the least common but most damaging and deadly type of tornado. In this article we describe an ultra-high-resolution (30-m gridpoint spacing) simulation of a supercell that produces a long-track tornado that exhibits instantaneous near-surface storm-relative winds reaching as high as 143 m s−1. The computational framework that enables this work is described, including the Blue Waters supercomputer, the CM1 cloud model, a data management framework built around the HDF5 scientific data format, and the VisIt and Vapor visualization tools. We find that tornadogenesis occurs in concert with processes not clearly seen in previous supercell simulations, including the consolidation of numerous vortices and vorticity patches along the storm’s forward-flank downdraft boundary and the intensification of a feature we call a streamwise vorticity current (SVC), a current of horizontal vorticity that is tilted upward into the storm’s low-level mesocyclone. The SVC is found throughout the genesis and much of the maintenance phase of the tornado, where it appears to help drive the storm’s vigorous low-level updraft. We compare stages of the storm’s maintenance phase to observations. We find that tornado decay occurs rapidly throughout the depth of the tornado and is associated with a weakening of the SVC and the development of a strong rainy downdraft that encircles the tornado, which has moved rearward into the storm’s cold pool.

Full access
Bruce D. Lee, Catherine A. Finley, and Christopher D. Karstens

Abstract

Mobile mesonet sampling in the hook echo/rear-flank downdraft (RFD) region of a tornadic supercell near Bowdle, South Dakota, provided the opportunity to examine RFD thermodynamic and kinematic attributes and evolution. Focused analysis of the fifth low-level mesocyclone cycle that produced two significant tornadoes including a violent tornado, revealed four RFD internal surge (RFDIS) events. RFDISs appeared to influence tornado development, intensity, and demise by altering the thermodynamic and kinematic character of the RFD region bounding the pretornadic and tornadic circulations. Significant tornadoes developed and matured when the RFD, modulated by internal surges, was kinematically strong, only weakly negatively buoyant, and very potentially buoyant. In contrast, the demise of the Bowdle tornado was concurrent with a much cooler RFDIS that replaced more buoyant and far more potentially buoyant RFD air near the tornado. This surge also likely contributed to a displacement of the tornado from the storm updraft. Development of the first tornado and rapid intensification of the Bowdle tornado occurred when an RFDIS boundary convergence zone interacted with the pretornadic and tornadic circulations, respectively. In the latter case, a strong vertical vortex sheet along an RFDIS boundary appeared to be a near-surface cyclonic vorticity source for the tornado. A downdraft closely bounding the right flank of the developing first tornado and intensifying Bowdle tornado provided some of the inflow to these circulations. For the Bowdle tornado, parcels were also streaming toward the tornado from its immediate east and northeast. A cyclonic–anticyclonic vortex couplet was observed during a portion of each significant tornado cycle.

Full access
Christopher D. Karstens, William A. Gallus Jr., Bruce D. Lee, and Catherine A. Finley

Abstract

In this study, aerial imagery of tornado damage is used to digitize the falling direction of trees (i.e., tree fall) along the 22 May 2011 Joplin, Missouri, and 27 April 2011 Tuscaloosa–Birmingham, Alabama, tornado tracks. Normalized mean patterns of observed tree fall from each tornado’s peak-intensity period are subjectively compared with results from analytical vortex simulations of idealized tornado-induced tree fall to characterize mean properties of the near-surface flow as depicted by the model. A computationally efficient method of simulating tree fall is applied that uses a Gumbel distribution of critical tree-falling wind speeds on the basis of the enhanced Fujita scale. Results from these simulations suggest that both tornadoes had strong radial near-surface winds. A few distinct tree-fall patterns are identified at various locations along the Tuscaloosa–Birmingham tornado track. Concentrated bands of intense tree fall, collocated with and aligned parallel to the axis of underlying valley channels, extend well beyond the primary damage path. These damage patterns are hypothesized to be the result of flow acceleration caused by channeling within valleys. Another distinct pattern of tree fall, likely not linked to the underlying topography, may have been associated with a rear-flank downdraft (RFD) internal surge during the tornado’s intensification stage. Here, the wind field was strong enough to produce tornado-strength damage well beyond the visible funnel cloud. This made it difficult to distinguish between tornado- and RFD-related damage and thus illustrates an ambiguity in ascertaining tornado-damage-path width in some locations.

Full access
Christopher D. Karstens, Timothy M. Samaras, Bruce D. Lee, William A. Gallus Jr., and Catherine A. Finley

Abstract

Since the spring of 2002, tornadoes were sampled on nine occasions using Hardened In-Situ Tornado Pressure Recorder probes, video probes, and mobile mesonet instrumentation. This study describes pressure and, in some cases, velocity data obtained from these intercepts. In seven of these events, the intercepted tornadoes were within the radar-indicated or visually identified location of the supercell low-level mesocyclone. In the remaining two cases, the intercepted tornadoes occurred outside of this region and were located along either the rear-flank downdraft gust front or an internal rear-flank downdraft surge boundary.

The pressure traces, sometimes augmented with videography, suggest that vortex structures ranged from single-cell to two-cell, quite similar to the swirl-ratio-dependent continuum of vortex structures shown in laboratory and numerical simulations. Although near-ground tornado observations are quite rare, the number of contemporary tornado measurements now available permits a comparative range of observed pressure deficits for a wide variety of tornado sizes and intensities to be presented.

Full access
Qing Yang, Larry K. Berg, Mikhail Pekour, Jerome D. Fast, Rob K. Newsom, Mark Stoelinga, and Catherine Finley

Abstract

One challenge with wind-power forecasts is the accurate prediction of rapid changes in wind speed (ramps). To evaluate the Weather Research and Forecasting (WRF) model's ability to predict such events, model simulations, conducted over an area of complex terrain in May 2011, are used. The sensitivity of the model's performance to the choice among three planetary boundary layer (PBL) schemes [Mellor–Yamada–Janjić (MYJ), University of Washington (UW), and Yonsei University (YSU)] is investigated. The simulated near-hub-height winds (62 m), vertical wind speed profiles, and ramps are evaluated against measurements obtained from tower-mounted anemometers, a Doppler sodar, and a radar wind profiler deployed during the Columbia Basin Wind Energy Study (CBWES). The predicted winds at near–hub height have nonnegligible biases in monthly mean under stable conditions. Under stable conditions, the simulation with the UW scheme better predicts upward ramps and the MYJ scheme is the most successful in simulating downward ramps. Under unstable conditions, simulations using the YSU and UW schemes show good performance in predicting upward ramps and downward ramps, with the YSU scheme being slightly better at predicting ramps with durations longer than 1 h. The largest differences in mean wind speed profiles among simulations using the three PBL schemes occur during upward ramps under stable conditions, which were frequently associated with low-level jets. The UW scheme has the best overall performance in ramp prediction over the CBWES site when evaluated using prediction accuracy and capture-rate statistics, but no single PBL parameterization is clearly superior to the others when all atmospheric conditions are considered.

Full access