Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Cathy Clerbaux x
  • All content x
Clear All Modify Search
Simon Whitburn, Lieven Clarisse, Sophie Bauduin, Maya George, Daniel Hurtmans, Sarah Safieddine, Pierre François Coheur, and Cathy Clerbaux


Space-based measurements of the outgoing longwave radiation (OLR) are essential for the study of Earth’s climate system. While the CERES instrument provides accurate measurements of this quantity, its measurements are not spectrally resolved. Here we present a high-resolution OLR product (sampled at 0.25 cm−1), derived from measurements of the IASI satellite sounder. The applied methodology relies on precalculated angular distribution models (ADMs). These are usually calculated for tens to hundreds of different scene types (characterized by surface and atmosphere parameters). To guarantee accurate results in the range 645–2300 cm−1 covered by IASI, we constructed ADMs for over 140 000 scenes. These were selected from one year of CAMS reanalysis data. A dissimilarity-based selection algorithm was applied to choose scenes as different from each other as possible, thereby maximizing the performance on real data, while keeping the number of scenes manageable. A comparison of the IASI OLR integrated over the 645–2300 cm−1 range was performed with the longwave broadband OLR products from CERES and the AIRS instrument. The latter are systematically higher due to the contribution of the far infrared to the total IR spectral range, but as expected exhibit generally high spatial correlations with the IASI OLR, except for some areas in the tropical region. We also compared the IASI OLR against the spectrally resolved OLR derived from AIRS. A good agreement was found above 1200 cm−1 while AIRS OLR appeared to be systematically higher in the atmospheric window region, likely related to differences in overpass time or to the use of a different cloud detection algorithm.

Open access
Fiona Hilton, Raymond Armante, Thomas August, Chris Barnet, Aurelie Bouchard, Claude Camy-Peyret, Virginie Capelle, Lieven Clarisse, Cathy Clerbaux, Pierre-Francois Coheur, Andrew Collard, Cyril Crevoisier, Gaelle Dufour, David Edwards, Francois Faijan, Nadia Fourrié, Antonia Gambacorta, Mitchell Goldberg, Vincent Guidard, Daniel Hurtmans, Samuel Illingworth, Nicole Jacquinet-Husson, Tobias Kerzenmacher, Dieter Klaes, Lydie Lavanant, Guido Masiello, Marco Matricardi, Anthony McNally, Stuart Newman, Edward Pavelin, Sebastien Payan, Eric Péquignot, Sophie Peyridieu, Thierry Phulpin, John Remedios, Peter Schlüssel, Carmine Serio, Larrabee Strow, Claudia Stubenrauch, Jonathan Taylor, David Tobin, Walter Wolf, and Daniel Zhou

The Infrared Atmospheric Sounding Interferometer (IASI) forms the main infrared sounding component of the European Organisation for the Exploitation of Meteorological Satellites's (EUMETSAT's) Meteorological Operation (MetOp)-A satellite (Klaes et al. 2007), which was launched in October 2006. This article presents the results of the first 4 yr of the operational IASI mission. The performance of the instrument is shown to be exceptional in terms of calibration and stability. The quality of the data has allowed the rapid use of the observations in operational numerical weather prediction (NWP) and the development of new products for atmospheric chemistry and climate studies, some of which were unexpected before launch. The assimilation of IASI observations in NWP models provides a significant forecast impact; in most cases the impact has been shown to be at least as large as for any previous instrument. In atmospheric chemistry, global distributions of gases, such as ozone and carbon monoxide, can be produced in near–real time, and short-lived species, such as ammonia or methanol, can be mapped, allowing the identification of new sources. The data have also shown the ability to track the location and chemistry of gaseous plumes and particles associated with volcanic eruptions and fires, providing valuable data for air quality monitoring and aircraft safety. IASI also contributes to the establishment of robust long-term data records of several essential climate variables. The suite of products being developed from IASI continues to expand as the data are investigated, and further impacts are expected from increased use of the data in NWP and climate studies in the coming years. The instrument has set a high standard for future operational hyperspectral infrared sounders and has demonstrated that such instruments have a vital role in the global observing system.

Full access