Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Cathy Nguyen x
  • All content x
Clear All Modify Search
Shashi K. Gupta, David P. Kratz, Anne C. Wilber, and L. Cathy Nguyen


Parameterized shortwave and longwave algorithms developed at the Langley Research Center have been used to derive surface radiative fluxes in the processing of the Clouds and the Earth's Radiant Energy System (CERES) data obtained from flight aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. Retrieved fluxes were validated on an instantaneous–footprint basis using coincident surface measurements obtained from the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) central facility, the ARM/SGP network of extended facilities, and a number of surface sites of the Baseline Surface Radiation Network (BSRN) and the Climate Monitoring and Diagnostics Laboratory (CMDL). Validation was carried out separately for clear-sky and all-sky conditions. For the shortwave, systematic errors varied from −12 to 10 W m−2 for clear skies and from −5 to 35 W m−2 for all-sky conditions. Random errors varied from 20 to 40 W m−2 for clear skies but were much larger (45–85 W m−2) for all-sky conditions. For the longwave, systematic errors were comparatively small for both clear-sky and all-sky conditions (0 to −10 W m−2) and random errors were within about 20 W m−2. In general, comparisons with surface data from the ARM/SGP site (especially the central facility) showed the best agreement. Large systematic errors in shortwave comparisons for some sites were related to flaws in the surface measurements. Larger errors in longwave fluxes for some footprints were found to be related to the errors in cloud mask retrievals, mostly during the nighttime. Smaller longwave errors related to potential errors in the operational analysis products used in satellite retrievals were also found. Still, longwave fluxes obtained with the present algorithm nearly meet the accuracy requirements for climate research.

Full access
Norman G. Loeb, David R. Doelling, Hailan Wang, Wenying Su, Cathy Nguyen, Joseph G. Corbett, Lusheng Liang, Cristian Mitrescu, Fred G. Rose, and Seiji Kato


The Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA), Edition 4.0 (Ed4.0), data product is described. EBAF Ed4.0 is an update to EBAF Ed2.8, incorporating all of the Ed4.0 suite of CERES data product algorithm improvements and consistent input datasets throughout the record. A one-time adjustment to shortwave (SW) and longwave (LW) TOA fluxes is made to ensure that global mean net TOA flux for July 2005–June 2015 is consistent with the in situ value of 0.71 W m−2. While global mean all-sky TOA flux differences between Ed4.0 and Ed2.8 are within 0.5 W m−2, appreciable SW regional differences occur over marine stratocumulus and snow/sea ice regions. Marked regional differences in SW clear-sky TOA flux occur in polar regions and dust areas over ocean. Clear-sky LW TOA fluxes in EBAF Ed4.0 exceed Ed2.8 in regions of persistent high cloud cover. Owing to substantial differences in global mean clear-sky TOA fluxes, the net cloud radiative effect in EBAF Ed4.0 is −18 W m−2 compared to −21 W m−2 in EBAF Ed2.8. The overall uncertainty in 1° × 1° latitude–longitude regional monthly all-sky TOA flux is estimated to be 3 W m−2 [one standard deviation (1σ)] for the Terra-only period and 2.5 W m−2 for the TerraAqua period both for SW and LW fluxes. The SW clear-sky regional monthly flux uncertainty is estimated to be 6 W m−2 for the Terra-only period and 5 W m−2 for the TerraAqua period. The LW clear-sky regional monthly flux uncertainty is 5 W m−2 for Terra only and 4.5 W m−2 for TerraAqua.

Open access
David R. Doelling, Norman G. Loeb, Dennis F. Keyes, Michele L. Nordeen, Daniel Morstad, Cathy Nguyen, Bruce A. Wielicki, David F. Young, and Moguo Sun


The Clouds and the Earth’s Radiant Energy System (CERES) instruments on board the Terra and Aqua spacecraft continue to provide an unprecedented global climate record of the earth’s top-of-atmosphere (TOA) energy budget since March 2000. A critical step in determining accurate daily averaged flux involves estimating the flux between CERES Terra or Aqua overpass times. CERES employs the CERES-only (CO) and the CERES geostationary (CG) temporal interpolation methods. The CO method assumes that the cloud properties at the time of the CERES observation remain constant and that it only accounts for changes in albedo with solar zenith angle and diurnal land heating, by assuming a shape for unresolved changes in the diurnal cycle. The CG method enhances the CERES data by explicitly accounting for changes in cloud and radiation between CERES observation times using 3-hourly imager data from five geostationary (GEO) satellites. To maintain calibration traceability, GEO radiances are calibrated against Moderate Resolution Imaging Spectroradiometer (MODIS) and the derived GEO fluxes are normalized to the CERES measurements. While the regional (1° latitude × 1° longitude) monthly-mean difference between the CG and CO methods can exceed 25 W m−2 over marine stratus and land convection, these regional biases nearly cancel in the global mean. The regional monthly CG shortwave (SW) and longwave (LW) flux uncertainty is reduced by 20%, whereas the daily uncertainty is reduced by 50% and 20%, respectively, over the CO method, based on comparisons with 15-min Geostationary Earth Radiation Budget (GERB) data.

Full access