Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Cegeon J. Chan x
  • Refine by Access: All Content x
Clear All Modify Search
Cegeon J. Chan and R. Alan Plumb


In simple GCMs, the time scale associated with the persistence of one particular phase of the model’s leading mode of variability can often be unrealistically large. In a particularly extreme example, the time scale in the Polvani–Kushner model is about an order of magnitude larger than the observed atmosphere. From the fluctuation–dissipation theorem, one implication of these simple models is that responses are exaggerated, since such setups are overly sensitive to any external forcing. Although the model’s equilibrium temperature is set up to represent perpetual Southern Hemisphere winter solstice, it is found that the tropospheric eddy-driven jet has a preference for two distinct regions: the subtropics and midlatitudes. Because of this bimodality, the jet persists in one region for thousands of days before “switching” to another. As a result, the time scale associated with the intrinsic variability is unrealistic. In this paper, the authors systematically vary the model’s tropospheric equilibrium temperature profile, one configuration being identical to that of Polvani and Kushner. Modest changes to the tropospheric state to either side of the parameter space removed the bimodality in the zonal-mean zonal jet’s spatial distribution and significantly reduced the time scale associated with the model’s internal mode. Consequently, the tropospheric response to the same stratospheric forcing is significantly weaker than in the Polvani and Kushner case.

Full access
Cegeon J. Chan, R. Alan Plumb, and Ivana Cerovecki


The authors investigate the dynamics of zonal jets in a semihemisphere zonally reentrant ocean model. The forcings imposed in the model are an idealized atmospheric wind stress and relaxation to a latitudinal temperature profile held constant in time. While there are striking similarities to the observed atmospheric annular modes, where the leading mode of variability is associated with the primary zonal jet’s meridional undulation, secondary (weaker) jets emerge and systematically migrate equatorward.

The model output suggests the following mechanism for the equatorward migration: while the eddy momentum fluxes sustain the jets, the eddy heat fluxes have a poleward bias causing an anomalous residual circulation with poleward (equatorward) flow on the poleward (equatorward) flanks. By conservation of mass, there must be a rising residual flow at the jet. From the thermodynamics equation, the greatest cooling occurs at the jet core, thus creating a tendency to reduce the baroclinicity on the poleward flank, while enhancing it on the equatorward flank. Consequently, the baroclinic zone shifts, perpetuating the jet migration.

Full access