Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Celine Herweijer x
  • Refine by Access: All Content x
Clear All Modify Search
Richard Seager
,
Ragu Murtugudde
,
Amy Clement
, and
Celine Herweijer

Abstract

At all longitudes oceanic evaporation rates are lower on the equator than at latitudes to the north and south. Over the oceanic cold tongues this is related to the presence of cold water and divergence of heat by the ocean circulation. Herein is investigated why there is also a minimum over the Indo-Pacific warm pool. Model results confirm the recent suggestion of Sobel that deep convective clouds over the warm pool reduce the amount of solar radiation coming into the ocean that the evaporation has to balance. The results also confirm that this is only a partial explanation. Less evaporation over the warm pool than in the trade wind regions is also caused by an interaction between the ocean heat transport and the distribution of surface wind speeds. Low wind speeds over the warm pool reduce the latent heat flux and increase the SST, and stronger wind speeds in the off-equatorial regions of the Tropics increase the latent heat flux and cool the SST. Consequently, the wind speed distribution increases the meridional temperature gradient and increases the poleward ocean heat transport. Low latent heat fluxes over the warm pool can be sustained because the incoming solar radiation is partially offset by ocean heat flux divergence. Large values under the trade winds are sustained by ocean heat flux convergence. Climate models are used to show that, in equilibrium, wind speeds can only influence the latent heat flux distribution through their coupling to the ocean heat transport. In the presence of ocean heat transport, advection of moisture in the atmospheric boundary layer from the subtropics to the equator also increases the evaporation under the trade winds, but this has a much smaller effect than the wind speed or the cloud–radiation interactions.

Full access
Celine Herweijer
,
Richard Seager
,
Edward R. Cook
, and
Julien Emile-Geay

Abstract

Drought is the most economically expensive recurring natural disaster to strike North America in modern times. Recently available gridded drought reconstructions have been developed for most of North America from a network of drought-sensitive tree-ring chronologies, many of which span the last 1000 yr. These reconstructions enable the authors to put the famous droughts of the instrumental record (i.e., the 1930s Dust Bowl and the 1950s Southwest droughts) into the context of 1000 yr of natural drought variability on the continent. We can now, with this remarkable new record, examine the severity, persistence, spatial signatures, and frequencies of drought variability over the past milllennium, and how these have changed with time.

The gridded drought reconstructions reveal the existence of successive “megadroughts,” unprecedented in persistence (20–40 yr), yet similar in year-to-year severity and spatial distribution to the major droughts experienced in today’s North America. These megadroughts occurred during a 400-yr-long period in the early to middle second millennium a.d., with a climate varying as today’s, but around a drier mean. The implication is that the mechanism forcing persistent drought in the West and the Plains in the instrumental era is analagous to that underlying the megadroughts of the medieval period. The leading spatial mode of drought variability in the recontructions resembles the North American ENSO pattern: widespread drought across the United States, centered on the Southwest, with a hint of the opposite phase in the Pacific Northwest.

Recently, climate models forced by the observed history of tropical Pacific SSTs have been able to successfully simulate all of the major North American droughts of the last 150 yr. In each case, cool “La Niña–like” conditions in the tropical Pacific are consistent with North American drought. With ENSO showing a pronounced signal in the gridded drought recontructions of the last millennium, both in terms of its link to the leading spatial mode, and the leading time scales of drought variability (revealed by multitaper spectral analysis and wavelet analysis), it is postulated that, as for the modern day, the medieval megadroughts were forced by protracted La Niña–like tropical Pacific SSTs. Further evidence for this comes from the global hydroclimatic “footprint” of the medieval era revealed by existing paleoclimatic archives from the tropical Pacific and ENSO-sensitive tropical and extratropical land regions. In general, this global pattern matches that observed for modern-day persistent North American drought, whereby a La Niña–like tropical Pacific is accompanied by hemispheric, and in the midlatitudes, zonal, symmetry of hydroclimatic anomalies.

Full access
Richard Seager
,
Yochanan Kushnir
,
Celine Herweijer
,
Naomi Naik
, and
Jennifer Velez

Abstract

The causes of persistent droughts and wet periods, or pluvials, over western North America are examined in model simulations of the period from 1856 to 2000. The simulations used either (i) global sea surface temperature data as a lower boundary condition or (ii) observed data in just the tropical Pacific and computed the surface ocean temperature elsewhere with a simple ocean model. With both arrangements, the model was able to simulate many aspects of the low-frequency (periods greater than 6 yr) variations of precipitation over the Great Plains and in the American Southwest including much of the nineteenth-century variability, the droughts of the 1930s (the “Dust Bowl”) and 1950s, and the very wet period in the 1990s. Results indicate that the persistent droughts and pluvials were ultimately forced by persistent variations of tropical Pacific surface ocean temperatures. It is argued that ocean temperature variations outside of the tropical Pacific, but forced from the tropical Pacific, act to strengthen the droughts and pluvials. The persistent precipitation variations are part of a pattern of global variations that have a strong hemispherically and zonally symmetric component, which is akin to interannual variability, and that can be explained in terms of interactions between tropical ocean temperature variations, the subtropical jets, transient eddies, and the eddy-driven mean meridional circulation. Rossby wave propagation poleward and eastward from the tropical Pacific heating anomalies disrupts the zonal symmetry, intensifying droughts and pluvials over North America. Both mechanisms of tropical driving of extratropical precipitation variations work in summer as well as winter and can explain the year-round nature of the precipitation variations. In addition, land–atmosphere interactions over North America appear important by (i) translating winter precipitation variations into summer evaporation and, hence, precipitation anomalies and (ii) shifting the northward flow of moisture around the North Atlantic subtropical anticyclone eastward from the Plains and Southwest to the eastern seaboard and western Atlantic Ocean.

Full access