Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Chad A. Baldi x
  • Refine by Access: All Content x
Clear All Modify Search
Michael M. French
,
Howard B. Bluestein
,
Ivan PopStefanija
,
Chad A. Baldi
, and
Robert T. Bluth

Abstract

A mobile, phased-array Doppler radar, the Mobile Weather Radar, 2005 X-band, Phased Array (MWR-05XP), has been used since 2007 to obtain data in supercells and tornadoes. Rapidly updating, volumetric data of tornadic vortex signatures (TVSs) associated with four tornadoes are used to investigate the time–height evolution of TVS intensity, position, and dissipation up through storm midlevels. Both TVS intensity and position were highly variable in time and height even during tornado mature phases. In one case, a TVS associated with a tornado dissipated aloft and a second TVS formed shortly thereafter while there was one continuous TVS near the ground. In a second case, the TVS associated with a long-lived, violent tornado merged with a second TVS (likely a second cyclonic tornado) causing the original TVS to strengthen. TVS dissipation occurred first at a height of ~1.5 km AGL and then at progressively higher levels in two cases; TVS dissipation occurred last in the lowest 1 km in three cases examined. Possible explanations are provided for the unsteady nature of TVS intensity and a conceptual model is presented for the initial dissipation of TVSs at ~1.5 km AGL.

Full access
Michael M. French
,
Howard B. Bluestein
,
Ivan PopStefanija
,
Chad A. Baldi
, and
Robert T. Bluth

Abstract

Observations from a hybrid phased-array Doppler radar, the Mobile Weather Radar, 2005 X-band, Phased Array (MWR-05XP), were used to investigate the vertical development of tornadic vortex signatures (TVSs) during supercell tornadogenesis. Data with volumetric update times of ∼10 s, an order of magnitude better than that of most other mobile Doppler radars, were obtained up to storm midlevels during the formation of three tornadoes. It is found that TVSs formed upward with time during tornadogenesis for two cases. In a third case, missing low-level data prevented a complete time–height analysis of TVS development; however, TVS formation occurred first near the ground and then at storm midlevels several minutes later. These results are consistent with the small number of volumetric mobile Doppler radar tornadogenesis cases from the past ∼10 years, but counter to studies prior to that, in which a descending TVS was observed in roughly half of tornado cases utilizing Weather Surveillance Radar-1988 Doppler (WSR-88D) data. A comparative example is used to examine the possible effects relatively long WSR-88D volumetric update times have on determining the mode of tornadogenesis.

Full access