Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Chang Cao x
  • All content x
Clear All Modify Search
Yadong Wang, Jian Zhang, Pao-Liang Chang, and Qing Cao


Complex terrain poses challenges to the ground-based radar quantitative precipitation estimation (QPE) because of partial or total blockages of radar beams in the lower tilts. Reflectivities from higher tilts are often used in the QPE under these circumstances and biases are then introduced due to vertical variations of reflectivity. The spaceborne Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM) satellite can provide good measurements of the vertical structure of reflectivity even in complex terrain, but the poor temporal resolution of TRMM PR data limits their usefulness in real-time QPE. This study proposes a novel vertical profile of reflectivity (VPR) correction approach to enhance ground radar–based QPEs in complex terrain by integrating the spaceborne radar observations. In the current study, climatological relationships between VPRs from an S-band Doppler weather radar located on the east coast of Taiwan and the TRMM PR are developed using an artificial neural network (ANN). When a lower tilt of the ground radar is blocked, higher-tilt reflectivity data are corrected with the trained ANN and then applied in the rainfall estimation. The proposed algorithm was evaluated with three typhoon precipitation events, and its preliminary performance was evaluated and analyzed.

Full access
Chang Cao, Yichen Yang, Yang Lu, Natalie Schultze, Pingyue Gu, Qi Zhou, Jiaping Xu, and Xuhui Lee


Heat stress caused by high air temperature and high humidity is a serious health concern for urban residents. Mobile measurement of these two parameters can complement weather station observations because of its ability to capture data at fine spatial scales and in places where people live and work. In this paper, we describe a smart temperature and humidity sensor (Smart-T) for use on bicycles to characterize intracity variations in human thermal conditions. The sensor has several key characteristics of internet of things (IoT) technology, including lightweight, low cost, low power consumption, ability to communicate and geolocate the data (via the cyclist’s smartphone), and the potential to be deployed in large quantities. The sensor has a reproducibility of 0.03°–0.05°C for temperature and of 0.18%–0.33% for relative humidity (one standard deviation of variation among multiple units). The time constant with a complete radiation shelter and moving at a normal cycling speed is 9.7 and 18.5 s for temperature and humidity, respectively, corresponding to a spatial resolution of 40 and 70 m. Measurements were made with the sensor on street transects in Nanjing, China. Results show that increasing vegetation fraction causes reduction in both air temperature and absolute humidity and that increasing impervious surface fraction has the opposite effect.

Restricted access
Xuhui Lee, Shoudong Liu, Wei Xiao, Wei Wang, Zhiqiu Gao, Chang Cao, Cheng Hu, Zhenghua Hu, Shuanghe Shen, Yongwei Wang, Xuefa Wen, Qitao Xiao, Jiaping Xu, Jinbiao Yang, and Mi Zhang

Lakes are an important component of the climate system. They provide moisture for precipitation, buffer temperature variations, and contribute to regional atmospheric carbon budgets. This article describes an eddy covariance (EC) mesonet on Lake Taihu, a large (area 2400 km2) and shallow (depth 2 m) lake situated in the heavily populated Yangtze River Delta, China. The mesonet consists of five lake sites, representing different biological attributes and wind–wave patterns, and a land site near the lake shore. Common to all the sites are standard EC instruments for measurement of the momentum, sensible heat, water vapor, and CO2 flux. One site is also equipped with laser-based analyzers for precise measurement of the CO2, CH4, and H2O mixing ratios and their isotopic compositions. To the authors' best knowledge, this is the first lake eddy flux mesonet. Early results reveal evidence of biological and pollution controls on the surface–air fluxes of energy, momentum, and greenhouse gases across the lake. The data will be used to address five science questions: 1) Are lake–air parameterizations established for deep lakes applicable to shallow lakes? 2) Why are lake–land breeze circulations less prevalent in the Taihu lake basin than in lake basins in northern latitudes? 3) How do algal blooms alter the lake–atmosphere interactions? 4) Is this eutrophic lake a source or sink of atmospheric CO2? 5) Does the decay of algal and macrophyte biomass contribute significant amounts of CH4 to the atmosphere?

Full access