Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Chaofan Li x
  • Refine by Access: All Content x
Clear All Modify Search
Yuhan Yan, Riyu Lu, and Chaofan Li

Abstract

Confident model projections of regional climate, in particular precipitation, could be very useful for designing climate change adaptation, particularly for vulnerable regions such as the Sahel. However, there is an extremely large uncertainty in the future Sahel rainfall projections made by current climate models. In this study, we find a close relationship between the future Sahel rainfall projections and present rainfall simulation biases in South Asia and the western North Pacific in summer, using the historical simulations and future projections of phase 5 of the Coupled Model Intercomparison Project (CMIP5). This future–present relationship can be used to calibrate Sahel rainfall projections since historical simulation biases can be much more reliably estimated than future change. The accordingly calibrated results show a substantial increase in both precipitation and precipitation minus evaporation in the future Sahel, in comparison with the multimodel ensemble (MME) result. This relationship between the historical rainfall bias and future Sahel rainfall projection is suggested to lie with the different schemes of convective parameterization among models: some schemes tend to result in both overestimated (underestimated) historical rainfall in South Asia (the western North Pacific) and enhanced future Sahel rainfall projection, while other schemes result in the opposite.

Full access
Philip E. Bett, Hazel E. Thornton, Julia F. Lockwood, Adam A. Scaife, Nicola Golding, Chris Hewitt, Rong Zhu, Peiqun Zhang, and Chaofan Li

Abstract

The skill and reliability of forecasts of winter and summer temperature, wind speed, and irradiance over China are assessed using the Met Office Global Seasonal Forecast System, version 5 (GloSea5). Skill in such forecasts is important for the future development of seasonal climate services for the energy sector, allowing better estimates of forthcoming demand and renewable electricity supply. It was found that, although overall the skill from the direct model output is patchy, some high-skill regions of interest to the energy sector can be identified. In particular, winter mean wind speed is skillfully forecast around the coast of the South China Sea, related to skillful forecasts of the El Niño–Southern Oscillation. Such information could improve seasonal estimates of offshore wind-power generation. In a similar way, forecasts of winter irradiance have good skill in eastern central China, with possible use for solar-power estimation. Skill in predicting summer temperatures, which derives from an upward trend, is shown over much of China. The region around Beijing, however, retains this skill even when detrended. This temperature skill could be helpful in managing summer energy demand. While both the strengths and limitations of the results presented here will need to be considered when developing seasonal climate services in the future, the outlook for such service development in China is promising.

Full access
Adam A. Scaife, Elizabeth Good, Ying Sun, Zhongwei Yan, Nick Dunstone, Hong-Li Ren, Chaofan Li, Riyu Lu, Peili Wu, Zongjian Ke, Zhuguo Ma, Kalli Furtado, Tongwen Wu, Tianjun Zhou, Tyrone Dunbar, Chris Hewitt, Nicola Golding, Peiqun Zhang, Rob Allan, Kirstine Dale, Fraser C. Lott, Peter A. Stott, Sean Milton, Lianchun Song, and Stephen Belcher

Abstract

We present results from the first 6 years of this major UK government funded project to accelerate and enhance collaborative research and development in climate science, forge a strong strategic partnership between UK and Chinese climate scientists and demonstrate new climate services developed in partnership. The development of novel climate services is described in the context of new modelling and prediction capability, enhanced understanding of climate variability and change, and improved observational datasets. Selected highlights are presented from over three hundred peer reviewed studies generated jointly by UK and Chinese scientists within this project. We illustrate new observational datasets for Asia and enhanced capability through training workshops on the attribution of climate extremes to anthropogenic forcing. Joint studies on the dynamics and predictability of climate have identified new opportunities for skilful predictions of important aspects of Chinese climate such as East Asian Summer Monsoon rainfall. In addition, the development of improved modelling capability has led to profound changes in model computer codes and climate model configurations, with demonstrable increases in performance. We also describe the successes and difficulties in bridging the gap between fundamental climate research and the development of novel real time climate services. Participation of dozens of institutes through sub-projects in this programme, which is governed by the Met Office Hadley Centre, the China Meteorological Administration and the Institute of Atmospheric Physics, is creating an important legacy for future collaboration in climate science and services.

Full access