Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Charles Clough x
  • Refine by Access: All Content x
Clear All Modify Search
Rod Frehlich, Robert Sharman, Charles Clough, Michael Padovani, Kelly Fling, Ward Boughers, and W. Scott Walton

Abstract

The effects of atmospheric turbulence on munition target scatter are determined from numerical simulations of ballistic trajectories through many realizations of realistic simulated turbulent wind fields. A technique is evaluated for correcting for the effects of turbulence on ballistic testing procedures by using a line of sonic anemometer measurements taken along the trajectory path. The metric used to evaluate the correction is the difference between the target impact scatter produced with and without the use of the anemometers in the trajectory calculations. The improvement in the testing procedure as measured by this metric is determined as a function of the number of sonic anemometers in the line and the sonic averaging time interval. The performance of the simulations is also compared with data from a field test for a standard small-caliber munition, and the predicted and observed target scatter are in good qualitative agreement, supporting the feasibility of the approach.

Full access
Robert D. Sharman, Yubao Liu, Rong-Shyang Sheu, Thomas T. Warner, Daran L. Rife, James F. Bowers, Charles A. Clough, and Edward E. Ellison

Abstract

Output from the Army Test and Evaluation Command’s Four-Dimensional Weather System’s mesoscale model is used to drive secondary-applications models to produce forecasts of quantities of importance for daily decision making at U.S. Army test ranges. Examples of three specific applications—a sound propagation model, a missile trajectory model, and a transport and diffusion model—are given, along with accuracy assessments using cases in which observational data are available for verification. Ensembles of application model forecasts are used to derive probabilities of exceedance of quantities that can be used to help range test directors to make test go–no-go decisions. The ensembles can be based on multiple meteorological forecast runs or on spatial ensembles derived from different soundings extracted from a single meteorological forecast. In most cases, the accuracies of the secondary-application forecasts are sufficient to meet operational needs at the test ranges.

Full access
Yubao Liu, Thomas T. Warner, James F. Bowers, Laurie P. Carson, Fei Chen, Charles A. Clough, Christopher A. Davis, Craig H. Egeland, Scott F. Halvorson, Terrence W. Huck Jr., Leo Lachapelle, Robert E. Malone, Daran L. Rife, Rong-Shyang Sheu, Scott P. Swerdlin, and Dean S. Weingarten

Abstract

Given the rapid increase in the use of operational mesoscale models to satisfy different specialized needs, it is important for the community to share ideas and solutions for meeting the many associated challenges that encompass science, technology, education, and training. As a contribution toward this objective, this paper begins a series that reports on the characteristics and performance of an operational mesogamma-scale weather analysis and forecasting system that has been developed for use by the U.S. Army Test and Evaluation Command. During the more than five years that this four-dimensional weather system has been in use at seven U.S. Army test ranges, valuable experience has been gained about the production and effective use of high-resolution model products for satisfying a variety of needs. This paper serves as a foundation for the rest of the papers in the series by describing the operational requirements for the system, the data assimilation and forecasting system characteristics, and the forecaster training that is required for the finescale products to be used effectively.

Full access