Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Charles Frush x
  • Refine by Access: All Content x
Clear All Modify Search
David P. Jorgensen, Peter H. Hildebrand, and Charles L. Frush


A vertically scanning, airborne, pulse-Doppler radar is described. Data processing methods to yield pseudo-dual-Doppler horizontal winds are presented. Results of an intercomparison with a ground-based dual-Doppler network are presented and discussed. These results indicate that the accuracy of the Doppler estimates are not seriously degraded by the aircraft's motion in a nonturbulent environment. Reasonable wind velocities were obtained in a stratiform precipitation (pre-warm-frontal) regime despite relatively long time periods for data gathering (∼20 min). Potential error sources are discussed, with the principal conclusion being that the uncertainty in the airborne Doppler mean velocity estimates are slightly larger than would be expected for a ground-based Doppler. However, the time period over which data are gathered is much longer than for a ground-based dual-Doppler network. Potential modifications to the antenna and data system to improve data quality are also discussed.

Full access
Shane D. Mayor, Donald H. Lenschow, Ronald L. Schwiesow, Jakob Mann, Charles L. Frush, and Melinda K. Simon


The capability of the NCAR 10.6-μm-wavelength CO2 Doppler lidar to measure radial air motion is validated by examining hard-target test data, comparing measurements with those from a two-axis propeller anemometer and a 915-MHz profiling radar, and analyzing power spectra and autocovariance functions of the lidar radial velocities in a daytime convective boundary layer. Results demonstrate that the lidar is capable of measuring radial velocity to less than 0.5 m s−1 precision from 20 laser pulse averages under high signal-to-noise ratio conditions. Hard-target test data and comparisons with other sensors show that the lidar data can be biased by as much as ±2 m s−1 when operating in the coherent oscillator mode and that correlated errors are negligible. Correlation coefficients are as large as 0.96 for 90-min comparisons of horizontal velocities averaged for 1 min from the lidar and anemometer, and 0.87 for 2.5-h comparisons between vertical velocities averaged for 30 s from the lidar and profiler. Comparisons of the lidar and profiler vertical velocities are particularly encouraging for the profiler since these results show that 915-MHz profilers are capable of making good vertical velocity measurements in strong convective boundary layers. The authors conclude that despite the commonplace systematic bias in lidar radial velocity, ground-based operation of the NCAR CO2 Doppler lidar can provide valuable velocity data for meso- and microscale meteorological studies. The lidar can also provide filtered velocity statistics that may be useful for boundary layer turbulence research.

Full access
Peter H. Hildebrand, Wen-Chau Lee, Craig A. Walther, Charles Frush, Mitchell Randall, Eric Loew, Richard Neitzel, Richard Parsons, Jacques Testud, François Baudin, and Alain LeCornec

The ELDORA/ASTRAIA (Electra Doppler Radar/Analyese Stereoscopic par Impulsions Aeroporte) airborne Doppler weather radar was recently placed in service by the National Center for Atmospheric Research and the Centre d'étude des Environnements Terrestre et Planetaires in France. After a multiyear development effort, the radar saw its first field tests in the TOGA COARE (Tropical Oceans–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment) field program during January and February 1993. The ELDORA/ASTRAIA radar (herein referred to as ELDORA) is designed to provide high-resolution measurements of the air motion and rainfall characteristics of very large storms, storms that are frequently too large or too remote to be adequately observed by ground-based radars. This paper discusses the measurement requirements and the design goals of the radar and concludes with an evaluation of the performance of the system using data from TOGA COARE.

The performance evaluation includes data from two cases. First, observations of a mesoscale convective system on 9 February 1993 are used to compare the data quality of the ELDORA radar with the National Oceanic and Atmospheric Administration P-3 airborne Doppler radars. The large-scale storm structure and airflow from ELDORA are seen to compare quite well with analyses using data from the P-3 radars. The major differences observed between the ELDORA and P-3 radar analyses were due to the higher resolution of the ELDORA data and due to the different domains observed by the individual radars, a result of the selection of flight track past the storm for each aircraft. In a second example, the high-resolution capabilities of ELDORA are evaluated using observations of a shear-parallel mesoscale convective system (MCS) that occurred on 18 February 1993. This MCS line was characterized by shear-parallel clusters of small convective cells, clusters that were moving quickly with the low-level winds. High-resolution analysis of these data provided a clear picture of the small scale of the storm vertical velocity structure associated with individual convective cells. The peak vertical velocities measured in the high-resolution analysis were also increased above low-resolution analysis values, in many areas by 50%–100%. This case exemplifies the need for high-resolution measurement and analysis of convective transport, even if the goal is to measure and parameterize the large-scale effects of storms. The paper concludes with a discussion of completion of the remaining ELDORA design goals and planned near-term upgrades to the system. These upgrades include an implementation of dual–pulse repetition frequency and development of real-time, in-flight dual-Doppler analysis capability.

Full access