Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Charles G. Bardeen x
  • Refine by Access: All Content x
Clear All Modify Search
Christopher S. Bretherton
,
Isabel L. McCoy
,
Johannes Mohrmann
,
Robert Wood
,
Virendra Ghate
,
Andrew Gettelman
,
Charles G. Bardeen
,
Bruce A. Albrecht
, and
Paquita Zuidema

Abstract

During the Cloud System Evolution in the Trades (CSET) field study, 14 research flights of the National Science Foundation G-V sampled the stratocumulus–cumulus transition between Northern California and Hawaii and its synoptic variability. The G-V made vertically resolved measurements of turbulence, cloud microphysics, aerosol characteristics, and trace gases. It also carried dropsondes and a vertically pointing W-band radar and lidar. This paper summarizes these observations with the goals of fostering novel comparisons with theory, models and reanalyses, and satellite-derived products. A longitude–height binning and compositing strategy mitigates limitations of sparse sampling and spatiotemporal variability. Typically, a 1-km-deep decoupled stratocumulus-capped boundary layer near California evolved into 2-km-deep precipitating cumulus clusters surrounded by patches of thin stratus that dissipated toward Hawaii. Low cloud cover was correlated with estimated inversion strength more than with cloud droplet number, even though the thickest clouds were generally precipitating and ultraclean layers indicative of aerosol–cloud–precipitation interaction were common west of 140°W. Accumulation-mode aerosol concentration correlated well with collocated cloud droplet number concentration and was typically largest near the surface. Aitken mode aerosol concentration was typically larger in the free troposphere. Wildfire smoke produced spikes of aerosol and trace gases on some flights. CSET data are compared with space–time collocated output from MERRA-2 reanalysis and from the CAM6 climate model run with winds and temperature nudged toward this reanalysis. The reanalysis compares better with the observed relative humidity than does nudged CAM6. Both vertically diffuse the stratocumulus cloud layer versus observations. MERRA-2 slightly underestimates in situ carbon monoxide measurements and underestimates ozone depletion within the boundary layer.

Full access
Eric J. Jensen
,
Leonhard Pfister
,
David E. Jordan
,
Thaopaul V. Bui
,
Rei Ueyama
,
Hanwant B. Singh
,
Troy D. Thornberry
,
Andrew W. Rollins
,
Ru-Shan Gao
,
David W. Fahey
,
Karen H. Rosenlof
,
James W. Elkins
,
Glenn S. Diskin
,
Joshua P. DiGangi
,
R. Paul Lawson
,
Sarah Woods
,
Elliot L. Atlas
,
Maria A. Navarro Rodriguez
,
Steven C. Wofsy
,
Jasna Pittman
,
Charles G. Bardeen
,
Owen B. Toon
,
Bruce C. Kindel
,
Paul A. Newman
,
Matthew J. McGill
,
Dennis L. Hlavka
,
Leslie R. Lait
,
Mark R. Schoeberl
,
John W. Bergman
,
Henry B. Selkirk
,
M. Joan Alexander
,
Ji-Eun Kim
,
Boon H. Lim
,
Jochen Stutz
, and
Klaus Pfeilsticker

Abstract

The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/).

Full access
Greg M. McFarquhar
,
Christopher S. Bretherton
,
Roger Marchand
,
Alain Protat
,
Paul J. DeMott
,
Simon P. Alexander
,
Greg C. Roberts
,
Cynthia H. Twohy
,
Darin Toohey
,
Steve Siems
,
Yi Huang
,
Robert Wood
,
Robert M. Rauber
,
Sonia Lasher-Trapp
,
Jorgen Jensen
,
Jeffrey L. Stith
,
Jay Mace
,
Junshik Um
,
Emma Järvinen
,
Martin Schnaiter
,
Andrew Gettelman
,
Kevin J. Sanchez
,
Christina S. McCluskey
,
Lynn M. Russell
,
Isabel L. McCoy
,
Rachel L. Atlas
,
Charles G. Bardeen
,
Kathryn A. Moore
,
Thomas C. J. Hill
,
Ruhi S. Humphries
,
Melita D. Keywood
,
Zoran Ristovski
,
Luke Cravigan
,
Robyn Schofield
,
Chris Fairall
,
Marc D. Mallet
,
Sonia M. Kreidenweis
,
Bryan Rainwater
,
John D’Alessandro
,
Yang Wang
,
Wei Wu
,
Georges Saliba
,
Ezra J. T. Levin
,
Saisai Ding
,
Francisco Lang
,
Son C. H. Truong
,
Cory Wolff
,
Julie Haggerty
,
Mike J. Harvey
,
Andrew R. Klekociuk
, and
Adrian McDonald

Abstract

Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation, and radiative processes, and their interactions. Projects between 2016 and 2018 used in situ probes, radar, lidar, and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN), and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF–NCAR G-V aircraft flying north–south gradients south of Tasmania, at Macquarie Island, and on the R/V Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multilayered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of dynamics and turbulence that likely drive heterogeneity of cloud phase. Satellite retrievals confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets.

Full access