Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Charles M. Ichoku x
  • Refine by Access: All Content x
Clear All Modify Search
Takamichi Iguchi, Toshihisa Matsui, Zhining Tao, Dongchul Kim, Charles M. Ichoku, Luke Ellison, and Jun Wang

Abstract

Series of aerosol transport hindcasts for West Africa were conducted using the Weather Research and Forecasting (WRF) Model coupled to chemistry within the NASA-Unified WRF (NU-WRF) framework. The transport of biomass-burning aerosols in April and December 2009 was investigated over two types of simulation domains. One-month simulations with 9-km grid spacing for April or December 2009 covered most of North and West Africa and were evaluated by comparison with measurements of the total-column aerosol optical depth, Ångström exponent, and horizontal wind components at various pressure levels. The horizontal wind components at 700 hPa were identified as key factors in determining the transport patterns of biomass-burning aerosols from sub-Saharan West Africa to the Sahel. The vertical accumulation of biomass-burning aerosols close to 700 hPa was demonstrated in 1-day simulations with 1-km horizontal grid spacing. A new simple parameterization for the effects of heat release by biomass burning was designed for this resolution and tested together with the conventional parameterization based on fixed smoke injection heights. The aerosol vertical profiles were somewhat sensitive to the selection of parameterization, except for cases with the assumption of excessive heating by biomass burning. The new parameterization works reasonably well and offers flexibility to relate smoke transport to biomass-burning plume rise that can be correlated with the satellite fire radiative power measurements, which is advantageous relative to the conventional parameterization.

Full access
Amin K. Dezfuli, Charles M. Ichoku, Karen I. Mohr, and George J. Huffman

Abstract

Using in situ data, three precipitation classes are identified for rainy seasons of West and East Africa: weak convective rainfall (WCR), strong convective rainfall (SCR), and mesoscale convective systems (MCSs). Nearly 75% of the total seasonal precipitation is produced by the SCR and MCSs, even though they represent only 8% of the rain events. Rain events in East Africa tend to have a longer duration and lower intensity than in West Africa, reflecting different characteristics of the SCR and MCS events in these two regions. Surface heating seems to be the primary convection trigger for the SCR, particularly in East Africa, whereas the WCR requires a dynamical trigger such as low-level convergence. The data are used to evaluate the performance of the recently launched Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) project. The IMERG-based precipitation shows significant improvement over its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), particularly in capturing the MCSs, due to its improved temporal resolution.

Full access
Amin K. Dezfuli, Charles M. Ichoku, George J. Huffman, Karen I. Mohr, John S. Selker, Nick van de Giesen, Rebecca Hochreutener, and Frank O. Annor

Abstract

Understanding of hydroclimatic processes in Africa has been hindered by the lack of in situ precipitation measurements. Satellite-based observations, in particular, the TRMM Multisatellite Precipitation Analysis (TMPA) have been pivotal to filling this void. The recently released Integrated Multisatellite Retrievals for GPM (IMERG) project aims to continue the legacy of its predecessor, TMPA, and provide higher-resolution data. Here, IMERG-V04A precipitation data are validated using in situ observations from the Trans-African Hydro-Meteorological Observatory (TAHMO) project. Various evaluation measures are examined over a select number of stations in West and East Africa. In addition, continent-wide comparisons are made between IMERG and TMPA. The results show that the performance of the satellite-based products varies by season, region, and the evaluation statistics. The precipitation diurnal cycle is relatively better captured by IMERG than TMPA. Both products exhibit a better agreement with gauge data in East Africa and humid West Africa than in the southern Sahel. However, a clear advantage for IMERG is not apparent in detecting the annual cycle. Although all gridded products used here reasonably capture the annual cycle, some differences are evident during the short rains in East Africa. Direct comparison between IMERG and TMPA over the entire continent reveals that the similarity between the two products is also regionally heterogeneous. Except for Zimbabwe and Madagascar, where both satellite-based observations present a good agreement, the two products generally have their largest differences over mountainous regions. IMERG seems to have achieved a reduction in the positive bias evident in TMPA over Lake Victoria.

Full access
Toshi Matsui, Charles Ichoku, Cynthia Randles, Tianle Yuan, Arlindo M. da Silva, Peter Colarco, Dongchul Kim, Robert Levy, Andrew Sayer, Mian Chin, David Giles, Brent Holben, Ellsworth Welton, Thomas Eck, and Lorraine Remer
Full access