Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: Charles N. Long x
  • Refine by Access: All Content x
Clear All Modify Search
Charles N. Long and Sally A. McFarlane

Abstract

Nauru Island at times generates low clouds that impact low-level cloud statistics and downwelling shortwave radiation measurements made at the Atmospheric Radiation Measurement Program (ARM) site. This study uses five years of Nauru data to quantify the island impact on the site measurements. The results indicate that the solar-heating-produced Nauru island effect occurs about 11% of the time during daylight hours. The island effect increases the 500–1000-m cloud base occurrence by 15%–20% when clouds occur, but because the island effect only occurs 11% of the time the overall increase in daylight low-cloud statistics is 2%, or 1% for 24-h statistics. In a similar way, the island effect produces a reduction of about 17% in the downwelling shortwave (SW) radiation across the daylight hours during the 11% of the time it occurs, an overall 2% daylight (or 1% for 24 h) average reduction. The island effect produces frequent positive downwelling SW cloud effects, in particular during the morning, which tend to somewhat mitigate the overall decrease in downwelling SW radiation that is due to clouds. This produces 17 W m−2 less daylight average SW cloud effect relative to non-island-effect times, in particular for the convectively suppressed regime that typifies island-effect-producing conditions. For long-term overall statistical studies such as model and satellite comparisons, the 2% daylight (or 1% per 24 h) average increase in low-level cloud occurrence and decrease in downwelling SW are not of large concern as long as researchers are aware of them. For shorter-term studies, however, or those that separate data by conditions such as convectively active/suppressed regimes, the Nauru island effect can have significant impacts.

Full access
Kunio Yoneyama, Chidong Zhang, and Charles N. Long

An international field campaign aiming at atmospheric and oceanic processes associated with the Madden–Julian oscillation (MJO) was conducted in and around the tropical Indian Ocean during October 2011–March 2012. The objective of the field campaign was to collect observations urgently needed to expedite the progress of understanding the key processes of the MJO, focusing on its convective initiation but also including propagation and maturation, and ultimately to improve skills of numerical simulation and prediction of the MJO. Primary targets of the field campaign included interaction of atmospheric deep convection with its environmental moisture, evolution of cloud populations, and air– sea interaction. Several MJO events were captured by ground-based, airborne, and oceanic instruments with advanced observing technology. Numerical simulations and real-time forecasts were integrated components of the field campaign in its design and operation. Observations collected during the campaign provide unprecedented opportunities to reveal detailed processes of the MJO and to assist evaluation, improvement, and development of weather and climate models. The data policy of the campaign encourages the broad research community to use the field observations to advance the MJO study.

Full access
Evgueni Kassianov, Charles N. Long, and Jason Christy

Abstract

Total-sky imager (TSI) and hemispheric-sky imager (HSI) each have a hemispherical field of view, and many TSIs are now deployed. These instruments have been used routinely to provide a time series of the fractional sky cover only. In this study, the possible retrieval of cloud-base height (CBH) from TSI surface observations is examined. This paper presents a validation analysis of a new retrieval using both a model-output inverse problem and independent, ground-based micropulse lidar data. The obtained results suggest that, at least for single-layer cloud fields, moderately accurate (within ∼0.35 km) CBH retrieval is possible.

Full access
Evgueni Kassianov, Charles N. Long, and Mikhail Ovtchinnikov

Abstract

The relationship between hemispherical sky cover and nadir-view cloud fraction is examined by using both model simulations and surface observations. Monte Carlo simulations of ground-based hemispherical measurements are based on four-dimensional cloud fields produced by a large-eddy simulation model. Surface hemispherical observations are performed during the Atmospheric Radiation Measurement Program’s Cloudiness Intercomparison Intensive Operational Period. It is shown that (i) 15-min averages of frequently sampled (30 s) sky cover provide a reasonable estimation of the cloud fraction for limited fields of view and that (ii) this estimation can be substantially improved (for cumulus clouds) if additional information about the cloud aspect ratio is incorporated into the retrieval process.

Full access
James C. Barnard and Charles N. Long

Abstract

In this paper, an empirical equation is presented that can be used to estimate shortwave cloud optical thickness from measurements and analysis of shortwave broadband irradiances. When applied to a time series of broadband observations, this method can predict cloud optical thickness distributions that are very similar to those obtained using the algorithm of Min and Harrison (henceforth the Min algorithm). For a given site, medians of the Min algorithm–derived and empirically derived distributions differ by less than 10%. This level of agreement holds over a wide geographical range of sites. The equation is designed for fully overcast skies, surface albedos less than 0.3, and a cosine of the solar zenith angle greater than 0.15.

Full access
Charles N. Long and Thomas P. Ackerman

Abstract

Pyranometers have been used for many years to measure broadband surface incoming solar irradiance, data that is necessary for surface energy budget, cloud forcing, and satellite validation research. Because such measurements are made at a specific location, it is unclear how representative they may be of a larger area. This study attempts to determine a reasonable spacing between measurement sites for such research by computing the correlation, and standard deviation from perfect correlation, between simultaneous measurements of incoming solar irradiance for a network of surface measurement sites covering a 75 km × 75 km area. Using 1-min data collected from this network of 11 sites during the NASA First ISSCP Radiation Experiment/Surface Radiation Budget Project temporal averages were calculated. The correlation between any two of these sites was determined by comparing simultaneous measurement averages for the 55 possible combinations of site pairs, along with the distances between them. In an attempt to remove the effect of the diurnal cycle, thus leaving clouds as the primary influence on correlation of the radiation field, model results for a clear day were used to normalize measured irradiances and correlations were again calculated.

For individual days, the correlation between sites varied widely, depending primarily on the type of cloud cover the region experienced that day. Removal of the diurnal cycle, as expected, significantly decreased these correlation values. Comparisons using the continuous experiment records from 13 October through 2 November 1986, however, show that a relatively high degree of correlation existed with or without the diurnal cycle removed. Plotting these correlation coefficients versus the distance between sites, the expected trend for a decrease in correlation with increasing distance is observed. Results also confirm that, whether using the complete record for the duration of the experiment or by individual day, the correlation between site station pairs increases with increasing averaging times. Finally, the standard deviation from perfect correlation suggests a predictive relationship within about 6% of clear-sky irradiance for daily averages at a distance of 75 km. Thus, a spacing of 150 km between measurement sites seems reasonable for studies of midlatitude frontal weather regimes using daily averages over periods of weeks or more.

Full access
Joseph J. Michalsky and Charles N. Long
Full access
Sally A. McFarlane, Charles N. Long, and Donna M. Flynn

Abstract

An Atmospheric Radiation and Cloud Station (ARCS) was established on the island of Nauru by the Atmospheric Radiation Measurement (ARM) Program. Analysis of the Nauru99 field experiment data indicated that measurements at the ARCS were affected by a cloud plume that was induced by diurnal heating of the island. During the Nauru Island Effects Study, instrumentation was installed at a second site to develop criteria for identifying when the cloud plume occurs and to quantify its effect on ARCS measurements. The plume directional heading and frequency of occurrence are affected by the large-scale tropical circulation. During the present study, in which an El Niño was developing, Nauru was in a region of active convection, and easterly trade winds were not dominant; plumes were observed in 25% of satellite images, and only one-half of the observed plumes were downwind of the ARCS site. Surface wind direction, surface air temperature, and downwelling solar radiation at the two sites were used to identify periods when the cloud plume affected surface measurements. Differences in low-cloud frequency and surface radiation between plume-affected and non-plume-affected periods were examined. Existence of the cloud plume increased the average low-cloud frequency of occurrence from 20% to 35%, decreased the average downwelling shortwave radiation by 50–60 W m−2, and increased the average downwelling longwave radiation by 5–10 W m−2. Installing a suite of surface meteorological instruments and a global shortwave radiometer at a second site will allow for the long-term quantification of the cloud plume effect on the radiation field at the ARCS site.

Full access
John A. Augustine, John J. DeLuisi, and Charles N. Long

A surface radiation budget observing network (SURFRAD) has been established for the United States to support satellite retrieval validation, modeling, and climate, hydrology, and weather research. The primary measurements are the downwelling and upwelling components of broadband solar and thermal infrared irradiance. A hallmark of the network is the measurement and computation of ancillary parameters important to the transmission of radiation. SURFRAD commenced operation in 1995. Presently, it is made up of six stations in diverse climates, including the moist subtropical environment of the U.S. southeast, the cool and dry northern plains, and the hot and arid desert southwest. Network operation involves a rigorous regimen of frequent calibration, quality assurance, and data quality control. An efficient supporting infrastructure has been created to gather, check, and disseminate the basic data expeditiously. Quality controlled daily processed data files from each station are usually available via the Internet within a day of real time. Data from SURFRAD have been used to validate measurements from NASA's Earth Observing System series of satellites, satellite-based retrievals of surface erythematogenic radiation, the national ultraviolet index, and real-time National Environmental Satellite, Data, and Information Service (NESDIS) products. It has also been used for carbon sequestration studies, to check radiative transfer codes in various physical models, for basic research and instruction at universities, climate research, and for many other applications. Two stations now have atmospheric energy flux and soil heat flux instrumentation, making them full surface energy balance sites. It is hoped that eventually all SURFRAD stations will have this capability. A surface radiation budget observing network (SURFRAD) has been established for the United States to support satellite retrieval validation, modeling, and climate, hydrology, and weather research. The primary measurements are the downwelling and upwelling components of broadband solar and thermal infrared irradiance. A hallmark of the network is the measurement and computation of ancillary parameters important to the transmission of radiation. SURFRAD commenced operation in 1995. Presently, it is made up of six stations in diverse climates, including the moist subtropical environment of the U.S. southeast, the cool and dry northern plains, and the hot and arid desert southwest. Network operation involves a rigorous regimen of frequent calibration, quality assurance, and data quality control. An efficient supporting infrastructure has been created to gather, check, and disseminate the basic data expeditiously. Quality controlled daily processed data files from each station are usually available via the Internet within a day of real time. Data from SURFRAD have been used to validate measurements from NASA's Earth Observing System series of satellites, satellite-based retrievals of surface erythematogenic radiation, the national ultraviolet index, and real-time National Environmental Satellite, Data, and Information Service (NESDIS) products. It has also been used for carbon sequestration studies, to check radiative transfer codes in various physical models, for basic research and instruction at universities, climate research, and for many other applications. Two stations now have atmospheric energy flux and soil heat flux instrumentation, making them full surface energy balance sites. It is hoped that eventually all SURFRAD stations will have this capability.

Full access
Casey D. Burleyson, Charles N. Long, and Jennifer M. Comstock

Abstract

Cloud radiative effects are examined using long-term datasets collected at the U.S. Department of Energy’s three Atmospheric Radiation Measurement Program Climate Research Facilities in the tropical western Pacific Ocean. The surface radiation budget, cloud populations, and cloud radiative effects are quantified by partitioning the data by cloud type, time of day, and large-scale modes of variability such as El Niño–Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin, Australia. The novel aspect of this analysis is the breakdown of aggregate cloud radiative effects by cloud type across the diurnal cycle. The Nauru Island (Republic of Nauru) cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability, whereas the cloud populations over Manus Island (Papua New Guinea) shift only slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon-related variations. When present, deeper convective clouds have a strong influence on the amount of radiation that reaches the surface. Their limited frequency reduces their aggregate radiative impact, however. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. The observations are used to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget when compared with biases in the timing of the diurnal cycle of cloud frequency. These results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

Full access