Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Charles Trepte x
  • Refine by Access: All Content x
Clear All Modify Search
Zhaoyan Liu, Mark Vaughan, David Winker, Chieko Kittaka, Brian Getzewich, Ralph Kuehn, Ali Omar, Kathleen Powell, Charles Trepte, and Chris Hostetler

Abstract

The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite was launched in April 2006 to provide global vertically resolved measurements of clouds and aerosols. Correct discrimination between clouds and aerosols observed by the lidar aboard the CALIPSO satellite is critical for accurate retrievals of cloud and aerosol optical properties and the correct interpretation of measurements. This paper reviews the theoretical basis of the CALIPSO lidar cloud and aerosol discrimination (CAD) algorithm, and describes the enhancements made to the version 2 algorithm that is used in the current data release (release 2). The paper also presents a preliminary assessment of the CAD performance based on one full day (12 August 2006) of expert manual classification and on one full month (July 2006) of the CALIOP 5-km cloud and aerosol layer products. Overall, the CAD algorithm works well in most cases. The 1-day manual verification suggests that the success rate is in the neighborhood of 90% or better. Nevertheless, several specific layer types are still misclassified with some frequency. Among these, the most prevalent are dense dust and smoke close to the source regions. The analysis of the July 2006 data showed that the misclassification of dust as cloud occurs for <1% of the total tropospheric cloud and aerosol features found. Smoke layers are misclassified less frequently than are dust layers. Optically thin clouds in the polar regions can be misclassified as aerosols. While the fraction of such misclassifications is small compared with the number of aerosol features found globally, caution should be taken when studies are performed on the aerosol in the polar regions. Modifications will be made to the CAD algorithm in future data releases, and the misclassifications encountered in the current data release are expected to be reduced greatly.

Full access
Graeme Stephens, David Winker, Jacques Pelon, Charles Trepte, Deborah Vane, Cheryl Yuhas, Tristan L’Ecuyer, and Matthew Lebsock

Abstract

One of the most successful demonstrations of an integrated approach to observe Earth from multiple perspectives is the A-Train satellite constellation. The science enabled by this constellation flourished with the introduction of the two active sensors carried by the National Aeronautics and Space Administration (NASA) CloudSat and the NASA–Centre National d’Études Spatiales (CNES) Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellites that were launched together on 28 April 2006. These two missions have provided a 10-yr demonstration of coordinated formation flying that made it possible to develop integrated products and that offered new insights into key atmospheric processes. The progress achieved over this decade of observations, summarized in this paper, clearly demonstrate the fundamental importance of the vertical structure of clouds and aerosol for understanding the influences of the larger-scale atmospheric circulation on aerosol, the hydrological cycle, the cloud-scale physics, and the formation of the major storm systems of Earth. The research also underscored inherent ambiguities in radiance data in describing cloud properties and how these active systems have greatly enhanced passive observation. It is now clear that monitoring the vertical structure of clouds and aerosol is essential, and a climate data record is now being constructed. These pioneering efforts are to be continued with the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE) mission planned for launch in 2019.

Open access
Ali H. Omar, David M. Winker, Mark A. Vaughan, Yongxiang Hu, Charles R. Trepte, Richard A. Ferrare, Kam-Pui Lee, Chris A. Hostetler, Chieko Kittaka, Raymond R. Rogers, Ralph E. Kuehn, and Zhaoyan Liu

Abstract

Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One year of CALIPSO level 2 version 2 data are analyzed to assess the veracity of the CALIPSO aerosol-type identification algorithm and generate vertically resolved distributions of aerosol types and their respective optical characteristics. To assess the robustness of the algorithm, the interannual variability is analyzed by using a fixed season (June–August) and aerosol type (polluted dust) over two consecutive years (2006 and 2007). The CALIPSO models define six aerosol types: clean continental, clean marine, dust, polluted continental, polluted dust, and smoke, with 532-nm (1064 nm) extinction-to-backscatter ratios Sa of 35 (30), 20 (45), 40 (55), 70 (30), 65 (30), and 70 (40) sr, respectively. This paper presents the global distributions of the CALIPSO aerosol types, the complementary distributions of integrated attenuated backscatter, and the volume depolarization ratio for each type. The aerosol-type distributions are further partitioned according to surface type (land/ocean) and detection resolution (5, 20, and 80 km) for optical and spatial context, because the optically thick layers are found most often at the smallest spatial resolution. Except for clean marine and polluted continental, all the aerosol types are found preferentially at the 80-km resolution. Nearly 80% of the smoke cases and 60% of the polluted dust cases are found over water, whereas dust and polluted continental cases are found over both land and water at comparable frequencies. Because the CALIPSO observables do not sufficiently constrain the determination of the aerosol, the surface type is used to augment the selection criteria. Distributions of the total attenuated color ratios show that the use of surface type in the typing algorithm does not result in abrupt and artificial changes in aerosol type or extinction.

Full access
Yongxiang Hu, David Winker, Mark Vaughan, Bing Lin, Ali Omar, Charles Trepte, David Flittner, Ping Yang, Shaima L. Nasiri, Bryan Baum, Robert Holz, Wenbo Sun, Zhaoyan Liu, Zhien Wang, Stuart Young, Knut Stamnes, Jianping Huang, and Ralph Kuehn

Abstract

The current cloud thermodynamic phase discrimination by Cloud-Aerosol Lidar Pathfinder Satellite Observations (CALIPSO) is based on the depolarization of backscattered light measured by its lidar [Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)]. It assumes that backscattered light from ice crystals is depolarizing, whereas water clouds, being spherical, result in minimal depolarization. However, because of the relationship between the CALIOP field of view (FOV) and the large distance between the satellite and clouds and because of the frequent presence of oriented ice crystals, there is often a weak correlation between measured depolarization and phase, which thereby creates significant uncertainties in the current CALIOP phase retrieval. For water clouds, the CALIOP-measured depolarization can be large because of multiple scattering, whereas horizontally oriented ice particles depolarize only weakly and behave similarly to water clouds. Because of the nonunique depolarization–cloud phase relationship, more constraints are necessary to uniquely determine cloud phase. Based on theoretical and modeling studies, an improved cloud phase determination algorithm has been developed. Instead of depending primarily on layer-integrated depolarization ratios, this algorithm differentiates cloud phases by using the spatial correlation of layer-integrated attenuated backscatter and layer-integrated particulate depolarization ratio. This approach includes a two-step process: 1) use of a simple two-dimensional threshold method to provide a preliminary identification of ice clouds containing randomly oriented particles, ice clouds with horizontally oriented particles, and possible water clouds and 2) application of a spatial coherence analysis technique to separate water clouds from ice clouds containing horizontally oriented ice particles. Other information, such as temperature, color ratio, and vertical variation of depolarization ratio, is also considered. The algorithm works well for both the 0.3° and 3° off-nadir lidar pointing geometry. When the lidar is pointed at 0.3° off nadir, half of the opaque ice clouds and about one-third of all ice clouds have a significant lidar backscatter contribution from specular reflections from horizontally oriented particles. At 3° off nadir, the lidar backscatter signals for roughly 30% of opaque ice clouds and 20% of all observed ice clouds are contaminated by horizontally oriented crystals.

Full access
Kathleen A. Powell, Chris A. Hostetler, Mark A. Vaughan, Kam-Pui Lee, Charles R. Trepte, Raymond R. Rogers, David M. Winker, Zhaoyan Liu, Ralph E. Kuehn, William H. Hunt, and Stuart A. Young

Abstract

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission was launched in April 2006 and has continuously acquired collocated multisensor observations of the spatial and optical properties of clouds and aerosols in the earth’s atmosphere. The primary payload aboard CALIPSO is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which makes range-resolved measurements of elastic backscatter at 532 and 1064 nm and linear depolarization ratios at 532 nm. CALIOP measurements are important in reducing uncertainties that currently limit understanding of the global climate system, and it is essential that these measurements be accurately calibrated. This work describes the procedures used to calibrate the 532-nm measurements acquired during the nighttime portions of the CALIPSO orbits. Accurate nighttime calibration of the 532-nm parallel-channel data is fundamental to the success of the CALIOP measurement scheme, because the nighttime calibration is used to infer calibration across the day side of the orbits and all other channels are calibrated relative to the 532-nm parallel channel. The theoretical basis of the molecular normalization technique as applied to space-based lidar measurements is reviewed, and a comprehensive overview of the calibration algorithm implementation is provided. Also included is a description of a data filtering procedure that detects and removes spurious high-energy events that would otherwise introduce large errors into the calibration. Error estimates are derived and comparisons are made to validation data acquired by the NASA airborne high–spectral resolution lidar. Similar analyses are also presented for the 532-nm perpendicular-channel calibration technique.

Full access
Theodore L. Anderson, Robert J. Charlson, Nicolas Bellouin, Olivier Boucher, Mian Chin, Sundar A. Christopher, Jim Haywood, Yoram J. Kaufman, Stefan Kinne, John A. Ogren, Lorraine A. Remer, Toshihiko Takemura, Didier Tanré, Omar Torres, Charles R. Trepte, Bruce A. Wielicki, David M. Winker, and Hongbin Yu

This document outlines a practical strategy for achieving an observationally based quantification of direct climate forcing by anthropogenic aerosols. The strategy involves a four-step program for shifting the current assumption-laden estimates to an increasingly empirical basis using satellite observations coordinated with suborbital remote and in situ measurements and with chemical transport models. Conceptually, the problem is framed as a need for complete global mapping of four parameters: clear-sky aerosol optical depth f f, radiative efficiency per unit optical depth δ, fine-mode fraction of optical depth f f, and the anthropogenic fraction of the fine mode f af . The first three parameters can be retrieved from satellites, but correlative, suborbital measurements are required for quantifying the aerosol properties that control E, for validating the retrieval of f f, and for partitioning fine-mode δ between natural and anthropogenic components. The satellite focus is on the “A-Train,” a constellation of six spacecraft that will fly in formation from about 2005 to 2008. Key satellite instruments for this report are the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) radiometers on Aqua, the Ozone Monitoring Instrument (OMI) radiometer on Aura, the Polarization and Directionality of Earth's Reflectances (POLDER) polarimeter on the Polarization and Anistropy of Reflectances for Atmospheric Sciences Coupled with Observations from a Lidar (PARASOL), and the Cloud and Aerosol Lider with Orthogonal Polarization (CALIOP) lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). This strategy is offered as an initial framework—subject to improvement over time—for scientists around the world to participate in the A-Train opportunity. It is a specific implementation of the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) program, presented earlier in this journal, which identified the integration of diverse data as the central challenge to progress in quantifying global-scale aerosol effects. By designing a strategy around this need for integration, we develop recommendations for both satellite data interpretation and correlative suborbital activities that represent, in many respects, departures from current practice.

Full access