Search Results

You are looking at 1 - 10 of 278 items for

  • Author or Editor: Chen Wang x
  • All content x
Clear All Modify Search
Guosen Chen and Bin Wang

Abstract

The skeleton model is one of the theoretical models for understanding the essence of the Madden–Julian oscillation (MJO). The heating parameterization scheme in the skeleton model assumes that precipitation tendency is in phase and proportional to the low-level moisture anomaly. The authors show that the observed MJO precipitation tendency is not in phase with the low-level moisture anomaly. The consequence of the wave activity envelope (WAE) scheme is reexamined by using a general MJO theoretical framework in which trio-interaction among convective heating, moisture, and wave–boundary layer (BL) dynamics are included and various simplified convective schemes can be accommodated. Without the BL dynamics, the general model framework can be reduced to the original skeleton model. The authors show that the original skeleton model yields a neutral mode that exhibits a “quadrupole” horizontal structure and a quadrature relationship between precipitation and low-level moisture; both are inconsistent with observations. With the BL dynamics and damping included, the model can produce a growing mode with improved horizontal structure and precipitation–moisture relationship, but deficiencies remain because of the WAE scheme. The authors further demonstrate that the general model with the simplified Betts–Miller scheme and BL dynamics can produce a realistic horizontal structure (coupled Kelvin–Rossby wave structure) and precipitation–moisture relationship (i.e., the BL moisture convergence leads precipitation, and column-integrated moisture coincides with precipitation).

Full access
Changlin Chen and Guihua Wang

Abstract

The annual cycle of sea surface temperature (SST) in the North Pacific Ocean is examined in terms of its response to global warming based on climate model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). As the global ocean warms up, the SST in the North Pacific generally tends to increase and the warming is greater in summer than in winter, leading to a significant intensification of SST annual cycle. The mixed layer temperature equation is used to examine the mechanism of this intensification. Results show that the decrease of mixed layer depth (MLD) in summer is the main reason behind the intensification of SST annual cycle. Because the MLD in summer is much shallower than that in winter, the incoming net heat flux is trapped in a thinner surface layer in summer, causing a warmer summer SST and the amplification of SST annual cycle. The change of the SST annual cycle in the North Pacific may have profound ecological impacts.

Full access
Xu Wang and Guanghua Chen

Abstract

The propagation dynamics and energetics of the quasi-biweekly oscillation (QBWO) over the South China Sea (SCS) in late summer [August–September (AS)] are investigated in this study. The QBWO originates from east of the Philippines and has a northwestward propagation. After arriving to the east of the SCS, the QBWO shifts to a westward migration and dominates over the SCS. The analyses of the vorticity budget suggest that the meridional wind anomaly could control the spatial migration of the vorticity anomaly through the β-effect term and further influences the movement of the convection anomaly. It implies that the meridional wind is a crucial factor to drive the propagation of the QBWO. The energetics of the QBWO is investigated to understand the maintenance of the QBWO, which indicates that the convection anomaly could affect the circulation anomaly through the energy conversions to maintain the QBWO.

Full access
Ge Chen and Xuan Wang

Abstract

A decade of newly available Argo float data for the period 2004–13 are used to investigate the three-dimensional structures of upper-ocean seasonality with emphasis on the vertical aspects of annual and semiannual cycles, yielding three main findings with oceanographic implications. First, the vertical evolution of the horizontal pattern of annual and semiannual amplitudes appears to be highly “nonlinear,” suggesting that the thermodynamic causes are depth dependent. The global ocean seasonality exhibits a vertically varying pattern in space, including midlatitude maxima in the near-surface layer due to solar forcing, zonal “strips” in the subsurface layer due to the equatorial current system, and systematic westward phase propagation in the intermediate layer due to annual Rossby waves. Second, a zone of 500 ± 300-m depths along with a 6-month periodicity are chosen as appropriate space–time “windows” for detecting eddy signatures via Argo-derived temperature amplitude and phase, respectively. It is revealed that the eddy-induced “blobby” pattern observed previously by satellite altimeter appears in the Agro result as “woodsy” bulks, which can be well illustrated in the semiannual amplitude and phase maps at window depths. Meanwhile, six eddy deserts paired in each ocean basin have also been identified. Third, the existence of a dozen vertical quasi-annual amphidromes is first reported, with cophase lines that may radiate toward the ~2000-m lower limit of Argo measurement. The well-known global meridional overturning circulation and the pseudozonal overturning currents in the equatorial Pacific, Atlantic, and Indian Oceans may possibly contribute to the observed vertical amphidromes.

Full access
Guosen Chen and Bin Wang

Abstract

Current theoretical studies have a debate on whether the Madden–Julian oscillation (MJO) has a zero or westward group velocity. A recent analysis of the observed Hovmöller diagram of MJO signals suggested that the MJO has a significant westward group velocity. Here it is shown that the observed MJO has a negligibly small group velocity, which is manifested in two aspects. First, on the wavenumber–frequency spectra diagram the precipitation spectra indicate quasi independence of the MJO frequency on wavenumber, suggesting a nearly vanishing group velocity. Second, on the Hovmöller diagram of the regressed intraseasonal daily precipitation, the MJO group velocity is defined by the propagation of the wave envelopes of the precipitation and is shown to be negligibly small for the eastward propagating signals. The causes of the discrepancy between this study and the recent study mentioned above are the calculating method and the data filtering process. The group velocity in the recent study is calculated by the propagation of local convection extrema, which does not necessarily indicate the propagation of the wave envelopes. More importantly, the westward propagation of the local convection extrema is an artifact of the data filtering. The Hovmöller diagram in the recent study was constructed by using only the eastward propagating wavenumber-1–5 signals. This truncation of data onto the planetary scales of the eastward wavenumber domain fails to resolve the Maritime Continent “barrier effect,” causing significant artificial westward propagation of local convection extrema.

Full access
Lin Wang and Wen Chen

Abstract

The thermal contrast between the Asian continent and the adjacent oceans is the primary aspect of the East Asian winter monsoon (EAWM) that can be well represented in the sea level pressure (SLP) field. Based on this consideration, a new SLP-based index measuring the intensity of the EAWM is proposed by explicitly taking into account both the east–west and the north–south pressure gradients around East Asia. The new index can delineate the EAWM-related circulation anomalies well, including the deepened (shallow) midtropospheric East Asian trough, sharpened and accelerated (widened and decelerated) upper-tropospheric East Asian jet stream, and enhanced (weakened) lower-tropospheric northerly winds in strong (weak) EAWM winters. Compared with previous indices, the new index has a very good performance describing the winter-mean surface air temperature variations over East Asia, especially for the extreme warm or cold winters. The index is strongly correlated with several atmospheric teleconnections including the Arctic Oscillation, the Eurasian pattern, and the North Pacific Oscillation/western Pacific pattern, implying the possible internal dynamics of the EAWM variability. Meanwhile, the index is significantly linked to El Niño–Southern Oscillation (ENSO) and the sea surface temperature (SST) over the tropical Indian Ocean. Moreover, the SST anomalies over the tropical Indian Ocean are more closely related to the index than ENSO as an independent predictor. This adds further knowledge to the prediction potentials of the EAWM apart from ENSO. The predictability of the index is high in the hindcasts of the Centre National de Recherches Météorologiques (CNRM) model from Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Hence, it would be a good choice to use this index for the monitoring, prediction, and research of the EAWM.

Full access
Guosen Chen and Bin Wang

ABSTRACT

The eastward propagating Madden–Julian oscillation (MJO) events exhibit various speeds ranging from 1 to 9 m s−1, but what controls the propagation speed remains elusive. This study attempts to address this issue. It reveals that the Kelvin wave response (KWR) induced by the MJO convection is a major circulation factor controlling the observed propagation speed of the MJO, with a stronger KWR corresponding to faster eastward propagation. A stronger KWR can accelerate the MJO eastward propagation by enhancing the low-level premoistening and preconditioning to the east of the MJO deep convection. The strength of the KWR is affected by the background sea surface temperature (SST). When the equatorial central Pacific SST warms, the zonal scale of the Indo-Pacific warm pool expands, which increases the zonal scale of the MJO, favoring enhancing the KWR. This effect of warm-pool zonal scale has been verified by idealized experiments using a theoretical model. The findings here shed light on the propagation mechanism of the MJO and provide a set of potential predictors for forecasting the MJO propagation.

Open access
Guosen Chen and Bin Wang

Abstract

Well-organized eastward propagation of the Madden–Julian oscillation (MJO) is found to be accompanied by the leading suppressed convection (LSC) over the Maritime Continent (MC) and the western Pacific (WP) when the MJO convection is in the Indian Ocean (IO). However, it remains unclear how the LSC influences the MJO and what causes the LSC. The present study shows that the LSC is a prevailing precursor for eastward propagation of the MJO across the MC. The LSC enhances the coupling of IO convection and the Walker cell to its east [front Walker cell (FWC)] by increasing the zonal heating gradient. The enhanced FWC strengthens the low-level easterly, which increases boundary layer (BL) convergence and promotes congestus convection to the east of the deep convection; the enhanced congestus convection preconditions the lower to middle atmosphere, which further promotes the transition from congestus to deep convection and leads to eastward propagation of the MJO. The MJO ceases eastward propagation once the FWC decouples from it. Further analysis reveals that LSC has two major origins: one comes from the eastward propagation of the preceding IO dry phase associated with the MJO, and the other develops concurrently with the IO convection. In the latter case, the development of the LSC is brought about by a two-way interaction between the MJO’s tropical heating and the associated tropical–extratropical teleconnection: the preceding IO suppressed convection induces a tropical–extratropical teleconnection, which evolves and forms an anomalous western North Pacific cyclone that generates upper-level convergence and induces significant LSC.

Full access
Guoxing Chen and Wei-Chyung Wang

Abstract

Recently, Chen et al. used a combination of observations and WRF simulations to illustrate that the anthropogenic aerosol–cloud microphysics–radiation interactions over the southeast Pacific can potentially reduce the excessive shortwave radiation reaching the sea surface, a common bias identified in CMIP5 models. Here, with the aid of a mixed-layer ocean, the authors further study the implications of the shortwave radiation reduction to the underlying air–sea coupling, focusing on the SST sensitivity to the changes. Results show that responses of the air–sea coupling include two negative feedbacks (a large decrease in the latent heat flux and a small decrease in the sensible heat flux, both associated with the surface cooling) and a positive feedback (an increase in the cloud cover, caused by the increase in the relative humidity within the boundary layer, especially during the daytime). The 0.1°C (W m−2)−1 SST sensitivity is about half that documented in CMIP5 models. In addition, an effective daytime cloud fraction weighted with the solar diurnal cycle is proposed to facilitate diagnosing the intensity of cloud–radiation interactions in general circulation models.

Full access
Guoxing Chen, Wei-Chyung Wang, and Jen-Ping Chen

Abstract

Atmosphere–ocean general circulation models tend to underestimate the solar radiative forcing by stratocumulus over the southeast Pacific, contributing to a warm sea surface temperature (SST) bias. The underestimation may be caused by biases in either macro- or micro- (or both) physical properties of clouds. This study used the WRF Model (incorporated with a physics-based two-moment cloud microphysical scheme) together with the 2008 Variability of the American Monsoon Systems Ocean–Cloud–Atmosphere–Land Study (VOCALS) field observations to investigate the effects of anthropogenic aerosols on the stratocumulus properties and their subsequent effects on the surface radiation balance. The effects were studied by comparing two cases: a control case with the anthropogenic aerosols and a sensitivity case without the anthropogenic aerosols. Results show that the control case produced cloud properties comparable with the measurements by aircraft and that aerosol–cloud microphysical interactions play an important role in regulating solar cloud radiative forcing. As expected, the anthropogenic aerosols increase the cloud droplet number and decrease the cloud droplet size, resulting in an enhancement of solar cloud radiative forcing and a reduction in solar radiation reaching the sea surface, up to a maximum of about 30 W m−2 near the coast. Results also show that aerosol–cloud microphysics–radiation interactions are sensitive to cloud fraction, thus highlighting the role of cloud diurnal variation in studying the cloud–radiation interactions. Analysis of the high-resolution (3 km) model simulations reveals that there exists an inherent scale dependence of aerosol–cloud–radiation interactions, with coarser horizontal resolution yielding a weaker variability.

Full access