Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Chia-Ping Cheng x
  • Refine by Access: All Content x
Clear All Modify Search
Chia-Ping Cheng, Hen-I Lin, Simon Wang, Po-Ting Dean Liu, and Kung-Yueh Camyale Chao
Free access
Guo-Yuan Lien, Chung-Han Lin, Zih-Mao Huang, Wen-Hsin Teng, Jen-Her Chen, Ching-Chieh Lin, Hsu-Hui Ho, Jyun-Ying Huang, Jing-Shan Hong, Chia-Ping Cheng, and Ching-Yuang Huang


The FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) Radio Occultation (RO) satellite constellation was launched in June 2019 as a successor of the FORMOSAT-3/COSMIC mission. The Central Weather Bureau (CWB) of Taiwan has received FORMOSAT-7/COSMIC-2 GNSS RO data in real time from the Taiwan Analysis Center for COSMIC. With the global numerical prediction system at CWB, a parallel semioperational experiment assimilating the FORMOSAT-7/COSMIC-2 bending angle data with all other operational observation data has been conducted to evaluate the impact of the FORMOSAT-7/COSMIC-2 data. The first seven-month results show that the quality of the early FORMOSAT-7/COSMIC-2 data has been satisfactory for assimilation. Consistent and significant positive impacts on global forecast skills have been observed since the start of the parallel experiment, with the most significant impact found in the tropical region, reflecting the low-inclination orbital design of the satellites. The impact of the FORMOSAT-7/COSMIC-2 RO data is also estimated using the ensemble forecast sensitivity to observation impact (EFSOI) method, showing an average positive impact per observation similar to other existing GNSS RO datasets, while the total impact is impressive by virtue of its large amount. Sensitivity experiments suggest that the quality control processes built in the Gridpoint Statistical Interpolation (GSI) system for RO data work well to achieve a positive impact by the low-level FORMOSAT-7/COSMIC-2 RO data, while more effort on observation error tuning should be focused to obtain an optimal assimilation performance. This study demonstrates the usefulness of the FORMOSAT-7/COSMIC-2 RO data in global numerical weather prediction during the calibration/validation period and leads to the operational use of the data at CWB.

Open access