Search Results
You are looking at 1 - 10 of 10 items for
- Author or Editor: Chie Yokoyama x
- Refine by Access: All Content x
Abstract
Three-dimensional rain characteristics of tropical cyclones (TCs) are statistically quantified, using Tropical Rainfall Measuring Mission (TRMM) data from December 1997 to December 2003. Tropical cyclones are classified into four maximum intensity classes (<34, 34–64, 64–128, and ≥128 kt) and three stages (developing, mature, and decaying). First, rain characteristics of TCs are compared with those of the equatorial (10°N–10°S) mean. A notable finding here is that the average stratiform rain ratio (SRR), which is the contribution from stratiform rain in the total rainfall, of TCs is 52%, while it is 44% for the equatorial oceanic mean and 46% for the Madden–Julian oscillation in its mature phase. Stronger rain is observed in TCs both for convective and stratiform rain. Second, radial rain characteristics of TCs suggest that the region 0–60 km can be classified as “the inner core,” and 60–500 km as “the rainband.” The inner core is characterized with small SRR, very high rain-top height, and a large flash rate, indicating the vigor of convective activity. In contrast, the rainband is characterized with large SRR and relatively large rain yield per flash, indicating a large rainfall amount with a moderate convective activity. An important implication of this study is that TCs are listed in the high end of tropical oceanic organized rain systems, in terms of the organization levels of rain. Last, we use the above composite results to calculate the rainfall contribution of TCs to total annual rainfall between 35°N and 35°S as 3.3% ± 0.1%.
Abstract
Three-dimensional rain characteristics of tropical cyclones (TCs) are statistically quantified, using Tropical Rainfall Measuring Mission (TRMM) data from December 1997 to December 2003. Tropical cyclones are classified into four maximum intensity classes (<34, 34–64, 64–128, and ≥128 kt) and three stages (developing, mature, and decaying). First, rain characteristics of TCs are compared with those of the equatorial (10°N–10°S) mean. A notable finding here is that the average stratiform rain ratio (SRR), which is the contribution from stratiform rain in the total rainfall, of TCs is 52%, while it is 44% for the equatorial oceanic mean and 46% for the Madden–Julian oscillation in its mature phase. Stronger rain is observed in TCs both for convective and stratiform rain. Second, radial rain characteristics of TCs suggest that the region 0–60 km can be classified as “the inner core,” and 60–500 km as “the rainband.” The inner core is characterized with small SRR, very high rain-top height, and a large flash rate, indicating the vigor of convective activity. In contrast, the rainband is characterized with large SRR and relatively large rain yield per flash, indicating a large rainfall amount with a moderate convective activity. An important implication of this study is that TCs are listed in the high end of tropical oceanic organized rain systems, in terms of the organization levels of rain. Last, we use the above composite results to calculate the rainfall contribution of TCs to total annual rainfall between 35°N and 35°S as 3.3% ± 0.1%.
Abstract
Synoptic-scale westward-propagating disturbances over the eastern Pacific (EP) are analyzed in boreal autumn, utilizing spectral analysis, composite analysis, and energy budget analysis. The results are compared with those over the western Pacific (WP).
Spectral peaks of total precipitable water (TPW) and vertical velocity at 850 hPa (ω850), and outgoing longwave radiation (OLR) are detected at periods of ~3–7 days over the EP. Meanwhile over the WP, a spectral peak of OLR is pronounced, but peaks of TPW and ω850 are not detected. Composite analysis reveals that disturbances that have a coupled structure, with a vortex at its center near ~9°N and a mixed Rossby–gravity (MRG) wave–type disturbance, frequently exist over the EP. At the same time, the disturbances have a double-deck structure associated with divergence both in the upper and in the middle to lower troposphere. These disturbances are associated with both deep convection and congestus, which generate kinetic energy of the disturbance in the upper and in the lower troposphere, respectively.
Examining diabatic heating in relation to the coupled disturbances, deep heating with the peak at the height of ~7.5 km is greatest in the northeastern part of the vortex. The coupled MRG wave–type disturbance provides a relatively deep cross-equatorial southerly flow into the northeastern part of the vortex. It is suggested that deep rain is maintained with the existence of deep convergence produced by the coupled disturbances over the EP, where a very shallow convergence field exists on average.
Abstract
Synoptic-scale westward-propagating disturbances over the eastern Pacific (EP) are analyzed in boreal autumn, utilizing spectral analysis, composite analysis, and energy budget analysis. The results are compared with those over the western Pacific (WP).
Spectral peaks of total precipitable water (TPW) and vertical velocity at 850 hPa (ω850), and outgoing longwave radiation (OLR) are detected at periods of ~3–7 days over the EP. Meanwhile over the WP, a spectral peak of OLR is pronounced, but peaks of TPW and ω850 are not detected. Composite analysis reveals that disturbances that have a coupled structure, with a vortex at its center near ~9°N and a mixed Rossby–gravity (MRG) wave–type disturbance, frequently exist over the EP. At the same time, the disturbances have a double-deck structure associated with divergence both in the upper and in the middle to lower troposphere. These disturbances are associated with both deep convection and congestus, which generate kinetic energy of the disturbance in the upper and in the lower troposphere, respectively.
Examining diabatic heating in relation to the coupled disturbances, deep heating with the peak at the height of ~7.5 km is greatest in the northeastern part of the vortex. The coupled MRG wave–type disturbance provides a relatively deep cross-equatorial southerly flow into the northeastern part of the vortex. It is suggested that deep rain is maintained with the existence of deep convergence produced by the coupled disturbances over the EP, where a very shallow convergence field exists on average.
Abstract
Differences in the characteristics of rain systems in the eastern Pacific (EP) intertropical convergence zone (ITCZ) and the western Pacific (WP) warm pool are quantitatively examined in relation to the large-scale environment. This study mainly uses precipitation feature (PF) data observed by the precipitation radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM). The PFs are classified into four types according to their areas and maximum heights. Rain from tall unorganized systems and very tall organized systems tends to be dominant in high-SST regions such as the WP. On the other hand, the EP has more rain from congestus and organized systems with moderate heights than the WP. It is shown that shallow rain from congestus and moderately deep rain from organized systems are highly correlated with shallow (1000–925 hPa) convergence fields with coefficients of 0.75 and 0.66, respectively. These relationships between characteristics of rain systems and the large-scale environment are robust through all seasons.
Abstract
Differences in the characteristics of rain systems in the eastern Pacific (EP) intertropical convergence zone (ITCZ) and the western Pacific (WP) warm pool are quantitatively examined in relation to the large-scale environment. This study mainly uses precipitation feature (PF) data observed by the precipitation radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM). The PFs are classified into four types according to their areas and maximum heights. Rain from tall unorganized systems and very tall organized systems tends to be dominant in high-SST regions such as the WP. On the other hand, the EP has more rain from congestus and organized systems with moderate heights than the WP. It is shown that shallow rain from congestus and moderately deep rain from organized systems are highly correlated with shallow (1000–925 hPa) convergence fields with coefficients of 0.75 and 0.66, respectively. These relationships between characteristics of rain systems and the large-scale environment are robust through all seasons.
Abstract
A quasi-stationary front, called the baiu front, often appears during the early-summer rainy season in East Asia (baiu in Japan). The present study examines how precipitation characteristics during the baiu season are determined by the large-scale environment, using satellite observation three-dimensional precipitation data. Emphasis is placed on the effect of subtropical jet (STJ) and lower-tropospheric convective instability (LCI).
A rainband appears together with a deep moisture convergence to the south of the STJ. Two types of mesoscale rainfall events (REs; contiguous rainfall areas), which are grouped by the stratiform precipitation ratio (SPR; stratiform precipitation over total precipitation), are identified: moderately stratiform REs (SPR of 0%–80%) representing tropical organized precipitation systems and highly stratiform REs (SPR of 80%–100%) representing midlatitude precipitation systems associated with extratropical cyclones. As the STJ becomes strong, rainfall from both types of mesoscale precipitation systems increases, with a distinct eastward extension of a midtropospheric moist region. In contrast, small systems appear regardless of the STJ, with high dependency on the LCI.
The results indicate that the STJ plays a role in moistening the midtroposphere owing to ascent associated with secondary circulation to the south of the STJ, producing environments favorable for organized precipitation systems in the southern part of the rainband. The horizontal moisture flux convergence may also contribute to precipitation just along the STJ. On the other hand, the LCI plays a role in generating shallow convection. In high-LCI conditions, deep convection can occur without the aid of mesoscale organization.
Abstract
A quasi-stationary front, called the baiu front, often appears during the early-summer rainy season in East Asia (baiu in Japan). The present study examines how precipitation characteristics during the baiu season are determined by the large-scale environment, using satellite observation three-dimensional precipitation data. Emphasis is placed on the effect of subtropical jet (STJ) and lower-tropospheric convective instability (LCI).
A rainband appears together with a deep moisture convergence to the south of the STJ. Two types of mesoscale rainfall events (REs; contiguous rainfall areas), which are grouped by the stratiform precipitation ratio (SPR; stratiform precipitation over total precipitation), are identified: moderately stratiform REs (SPR of 0%–80%) representing tropical organized precipitation systems and highly stratiform REs (SPR of 80%–100%) representing midlatitude precipitation systems associated with extratropical cyclones. As the STJ becomes strong, rainfall from both types of mesoscale precipitation systems increases, with a distinct eastward extension of a midtropospheric moist region. In contrast, small systems appear regardless of the STJ, with high dependency on the LCI.
The results indicate that the STJ plays a role in moistening the midtroposphere owing to ascent associated with secondary circulation to the south of the STJ, producing environments favorable for organized precipitation systems in the southern part of the rainband. The horizontal moisture flux convergence may also contribute to precipitation just along the STJ. On the other hand, the LCI plays a role in generating shallow convection. In high-LCI conditions, deep convection can occur without the aid of mesoscale organization.
Abstract
Over the eastern Pacific, recent studies have shown that a shallow large-scale meridional circulation with its return flow just above the boundary layer coexists with a deep Hadley circulation. This study examines how the vertical structure of large-scale circulations is related to satellite-observed individual precipitation properties over the eastern Pacific in boreal autumn. Three reanalysis datasets are used to describe differences in their behavior. The results are compared among reanalyses and three distinctly different convection periods, which are defined according to their radar echo depths. Shallow and deep circulations are shown to often coexist for each of the three periods, resulting in the multicell circulation structure. Deep (shallow) circulations preferentially appear in the mostly deep (shallow) convection period of radar echo depths. Thus, depth of convection basically corresponds to which circulation branch is dominant. This anticipated relationship between the circulation structure and depths of convection is common in all three reanalyses. Notable differences among reanalyses are found in the mid- to upper troposphere in either the time-mean state or the composite analysis based on the convection periods. Reanalyses have large variations in characteristics associated with deep circulations such as the upper-tropospheric divergence and outflows and the midlevel inflows, which are consistent with their different profiles of latent heating in the mid- to upper troposphere. On the other hand, discrepancies in shallow circulations and shallow convection are also found, but they are not as large as those in deep ones.
Abstract
Over the eastern Pacific, recent studies have shown that a shallow large-scale meridional circulation with its return flow just above the boundary layer coexists with a deep Hadley circulation. This study examines how the vertical structure of large-scale circulations is related to satellite-observed individual precipitation properties over the eastern Pacific in boreal autumn. Three reanalysis datasets are used to describe differences in their behavior. The results are compared among reanalyses and three distinctly different convection periods, which are defined according to their radar echo depths. Shallow and deep circulations are shown to often coexist for each of the three periods, resulting in the multicell circulation structure. Deep (shallow) circulations preferentially appear in the mostly deep (shallow) convection period of radar echo depths. Thus, depth of convection basically corresponds to which circulation branch is dominant. This anticipated relationship between the circulation structure and depths of convection is common in all three reanalyses. Notable differences among reanalyses are found in the mid- to upper troposphere in either the time-mean state or the composite analysis based on the convection periods. Reanalyses have large variations in characteristics associated with deep circulations such as the upper-tropospheric divergence and outflows and the midlevel inflows, which are consistent with their different profiles of latent heating in the mid- to upper troposphere. On the other hand, discrepancies in shallow circulations and shallow convection are also found, but they are not as large as those in deep ones.
Abstract
Using 10-yr high-resolution satellite and reanalysis data, the synoptic-scale dual structure of precipitable water (PW), in which the southern and northern bands straddled at the ITCZ produce zonally propagating meridional dipoles, is observed over the eastern Pacific (EP) during boreal summer and fall. Composites indicate that the PW dipole, concurrent with the dipole-like filtered divergence, has a shift to the west of the anomalously cyclonic circulation. The vertical structure of filtered meridional wind is characterized by a wavenumber-1 baroclinic mode, and the vertical motion has two peaks situated at 850 and 300 hPa, respectively. To the east of the PW dipole, the shallow convection is embedded within the deep convection, forming a multilevel structure of meridional wind on the ITCZ equatorward side. To the west of the PW dipole, the deep convection tends to be suppressed because of the invasion of midlevel dry air advected by northerly flows. The generation and propagation of the dual PW band can be attributed to the divergence and advection terms related to specific humidity and three-dimensional wind. By comparison, the PW anomalies over the western North Pacific, only exhibiting a single band, coincide with the centers of synoptic disturbances with a barotropic vertical structure. Because of the weakening of lower-level divergence, the vertical motion, and the horizontal gradient of PW, the synoptic-scale PW signal is reduced significantly. The typical cases and statistics confirm that the strong meridional dipoles and westward-propagating disturbances are closely associated with the distortion and breakdown of ITCZ over the EP.
Abstract
Using 10-yr high-resolution satellite and reanalysis data, the synoptic-scale dual structure of precipitable water (PW), in which the southern and northern bands straddled at the ITCZ produce zonally propagating meridional dipoles, is observed over the eastern Pacific (EP) during boreal summer and fall. Composites indicate that the PW dipole, concurrent with the dipole-like filtered divergence, has a shift to the west of the anomalously cyclonic circulation. The vertical structure of filtered meridional wind is characterized by a wavenumber-1 baroclinic mode, and the vertical motion has two peaks situated at 850 and 300 hPa, respectively. To the east of the PW dipole, the shallow convection is embedded within the deep convection, forming a multilevel structure of meridional wind on the ITCZ equatorward side. To the west of the PW dipole, the deep convection tends to be suppressed because of the invasion of midlevel dry air advected by northerly flows. The generation and propagation of the dual PW band can be attributed to the divergence and advection terms related to specific humidity and three-dimensional wind. By comparison, the PW anomalies over the western North Pacific, only exhibiting a single band, coincide with the centers of synoptic disturbances with a barotropic vertical structure. Because of the weakening of lower-level divergence, the vertical motion, and the horizontal gradient of PW, the synoptic-scale PW signal is reduced significantly. The typical cases and statistics confirm that the strong meridional dipoles and westward-propagating disturbances are closely associated with the distortion and breakdown of ITCZ over the EP.
Abstract
Contrasts in precipitation characteristics across the baiu front are examined with Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data near Japan during June–July (1998–2011). The vertical structure of atmospheric stratification differs between the tropics and midlatitudes. On an average, the baiu front is found around the latitude that roughly divides the midlatitude atmosphere from the tropical atmosphere. Precipitation characteristics are compared between the southern and northern sides of the reference latitude of the baiu front, which is detected with equivalent potential temperature at 1000 hPa of 345 K in terms of the boundary between the tropics and midlatitudes.
The results show that there are obvious differences in precipitation characteristics between the southern and northern sides. In the south, convective rainfall ratios (CRRs) are 40%–60%, which are larger than those in the north (20%–40%). Greater rainfall intensity and taller/deeper precipitation are also observed in the south. Moreover, the characteristics of precipitation features (PFs), which are contiguous areas of nonzero rainfall, differ between the southern and northern sides. In the north, wide stratiform precipitation systems with CRRs of 0%–40% and heights of 8–11 km are dominant. In the south, organized precipitation systems with heights of 12–14 km and CRRs of 30%–50% and those with very large heights (14–17 km) and CRRs of 50%–80% are dominant in addition to wide stratiform precipitation systems. These results suggest that the mechanisms to bring rainfall are different between the southern and northern regions of the baiu front.
Abstract
Contrasts in precipitation characteristics across the baiu front are examined with Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data near Japan during June–July (1998–2011). The vertical structure of atmospheric stratification differs between the tropics and midlatitudes. On an average, the baiu front is found around the latitude that roughly divides the midlatitude atmosphere from the tropical atmosphere. Precipitation characteristics are compared between the southern and northern sides of the reference latitude of the baiu front, which is detected with equivalent potential temperature at 1000 hPa of 345 K in terms of the boundary between the tropics and midlatitudes.
The results show that there are obvious differences in precipitation characteristics between the southern and northern sides. In the south, convective rainfall ratios (CRRs) are 40%–60%, which are larger than those in the north (20%–40%). Greater rainfall intensity and taller/deeper precipitation are also observed in the south. Moreover, the characteristics of precipitation features (PFs), which are contiguous areas of nonzero rainfall, differ between the southern and northern sides. In the north, wide stratiform precipitation systems with CRRs of 0%–40% and heights of 8–11 km are dominant. In the south, organized precipitation systems with heights of 12–14 km and CRRs of 30%–50% and those with very large heights (14–17 km) and CRRs of 50%–80% are dominant in addition to wide stratiform precipitation systems. These results suggest that the mechanisms to bring rainfall are different between the southern and northern regions of the baiu front.
Abstract
This study estimates future changes in the early summer precipitation characteristics around Japan using changes in the large-scale environment, by combining Global Precipitation Measurement precipitation radar observations and phase 5 of the Coupled Models Intercomparison Project climate model large-scale projections. Analyzing satellite-based data, we first relate precipitation in three types of rain events (small, organized, and midlatitude), which are identified via their characteristics, to the large-scale environment. Two environmental fields are chosen to determine the large-scale conditions of the precipitation: the sea surface temperature and the midlevel large-scale vertical velocity. The former is related to the lower-tropospheric thermal instability, while the latter affects precipitation via moistening/drying of the midtroposphere. Consequently, favorable conditions differ between the three types in terms of these two environmental fields. Using these precipitation–environment relationships, we then reconstruct the precipitation distributions for each type with reference to the two environmental indices in climate models for the present and future climates. Future changes in the reconstructed precipitation are found to vary widely between the three types in association with the large-scale environment. In more than 90% of models, the region affected by organized-type precipitation will expand northward, leading to a substantial increase in this type of precipitation near Japan along the Sea of Japan, and in northern and eastern Japan on the Pacific side, where its present amount is relatively small. This result suggests an elevated risk of heavy rainfall in those regions because the maximum precipitation intensity is more intense in organized-type precipitation than in the other two types.
Abstract
This study estimates future changes in the early summer precipitation characteristics around Japan using changes in the large-scale environment, by combining Global Precipitation Measurement precipitation radar observations and phase 5 of the Coupled Models Intercomparison Project climate model large-scale projections. Analyzing satellite-based data, we first relate precipitation in three types of rain events (small, organized, and midlatitude), which are identified via their characteristics, to the large-scale environment. Two environmental fields are chosen to determine the large-scale conditions of the precipitation: the sea surface temperature and the midlevel large-scale vertical velocity. The former is related to the lower-tropospheric thermal instability, while the latter affects precipitation via moistening/drying of the midtroposphere. Consequently, favorable conditions differ between the three types in terms of these two environmental fields. Using these precipitation–environment relationships, we then reconstruct the precipitation distributions for each type with reference to the two environmental indices in climate models for the present and future climates. Future changes in the reconstructed precipitation are found to vary widely between the three types in association with the large-scale environment. In more than 90% of models, the region affected by organized-type precipitation will expand northward, leading to a substantial increase in this type of precipitation near Japan along the Sea of Japan, and in northern and eastern Japan on the Pacific side, where its present amount is relatively small. This result suggests an elevated risk of heavy rainfall in those regions because the maximum precipitation intensity is more intense in organized-type precipitation than in the other two types.
Abstract
The spectral latent heating (SLH) algorithm was developed to estimate latent heating profiles for the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR). The method uses TRMM PR information (precipitation-top height, precipitation rates at the surface and melting level, and rain type) to select heating profiles from lookup tables (LUTs). LUTs for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) using a cloud-resolving model (CRM).
The two-dimensional (2D) CRM was used in previous studies. The availability of exponentially increasing computer capabilities has resulted in three-dimensional (3D) CRM simulations for multiday periods becoming increasingly prevalent. In this study, LUTs from the 2D and 3D simulations are compared. Using the LUTs from 3D simulations results in less agreement between the SLH-retrieved heating and sounding-based heating for the South China Sea Monsoon Experiment (SCSMEX). The level of SLH-estimated maximum heating is lower than that of the sounding-derived maximum heating. This is explained by the fact that using the 3D LUTs results in stronger convective heating and weaker stratiform heating above the melting level than is the case if using the 2D LUTs. More condensate is generated in and carried from the convective region in the 3D model than in the 2D model, and less condensate is produced by the stratiform region’s own upward motion.
Abstract
The spectral latent heating (SLH) algorithm was developed to estimate latent heating profiles for the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR). The method uses TRMM PR information (precipitation-top height, precipitation rates at the surface and melting level, and rain type) to select heating profiles from lookup tables (LUTs). LUTs for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) using a cloud-resolving model (CRM).
The two-dimensional (2D) CRM was used in previous studies. The availability of exponentially increasing computer capabilities has resulted in three-dimensional (3D) CRM simulations for multiday periods becoming increasingly prevalent. In this study, LUTs from the 2D and 3D simulations are compared. Using the LUTs from 3D simulations results in less agreement between the SLH-retrieved heating and sounding-based heating for the South China Sea Monsoon Experiment (SCSMEX). The level of SLH-estimated maximum heating is lower than that of the sounding-derived maximum heating. This is explained by the fact that using the 3D LUTs results in stronger convective heating and weaker stratiform heating above the melting level than is the case if using the 2D LUTs. More condensate is generated in and carried from the convective region in the 3D model than in the 2D model, and less condensate is produced by the stratiform region’s own upward motion.
The Mirai Indian Ocean cruise for the Study of the Madden-Julian oscillation (MJO)-convection Onset (MISMO) was a field experiment that took place in the central equatorial Indian Ocean during October–December 2006, using the research vessel Mirai, a moored buoy array, and landbased sites at the Maldive Islands. The aim of MISMO was to capture atmospheric and oceanic features in the equatorial Indian Ocean when convection in the MJO was initiated. This article describes details of the experiment as well as some selected early results.
Intensive observations using Doppler radar, radiosonde, surface meteorological measurements, and other instruments were conducted at 0°, 80.5°E, after deploying an array of surface and subsurface moorings around this site. The Mirai stayed within this buoy array area from 24 October through 25 November. After a period of stationary observations, underway meteorological measurements were continued from the Maldives to the eastern Indian Ocean in early December.
All observations were collected during an El Nino and a positive Indian Ocean Dipole (IOD) event, which tended to suppress convection in the western Pacific and eastern Indian Ocean in throughout much of November 2006. However, as the IOD began to wane in mid-November, an abrupt change from westerly to easterly took place in upper tropospheric winds in the MISMO study region. By late November and early December, deep convection developed over the central Indian Ocean and eastward movement of large-scale cloud systems were observed. This article describes these variations in detail and how they advance our understanding of the onset of tropical deep convection on intraseasonal time scales.
The Mirai Indian Ocean cruise for the Study of the Madden-Julian oscillation (MJO)-convection Onset (MISMO) was a field experiment that took place in the central equatorial Indian Ocean during October–December 2006, using the research vessel Mirai, a moored buoy array, and landbased sites at the Maldive Islands. The aim of MISMO was to capture atmospheric and oceanic features in the equatorial Indian Ocean when convection in the MJO was initiated. This article describes details of the experiment as well as some selected early results.
Intensive observations using Doppler radar, radiosonde, surface meteorological measurements, and other instruments were conducted at 0°, 80.5°E, after deploying an array of surface and subsurface moorings around this site. The Mirai stayed within this buoy array area from 24 October through 25 November. After a period of stationary observations, underway meteorological measurements were continued from the Maldives to the eastern Indian Ocean in early December.
All observations were collected during an El Nino and a positive Indian Ocean Dipole (IOD) event, which tended to suppress convection in the western Pacific and eastern Indian Ocean in throughout much of November 2006. However, as the IOD began to wane in mid-November, an abrupt change from westerly to easterly took place in upper tropospheric winds in the MISMO study region. By late November and early December, deep convection developed over the central Indian Ocean and eastward movement of large-scale cloud systems were observed. This article describes these variations in detail and how they advance our understanding of the onset of tropical deep convection on intraseasonal time scales.