Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Chihiro Kodama x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Tatsuya Seiki, Chihiro Kodama, Akira T. Noda, and Masaki Satoh

Abstract

This study examines the impact of an alteration of a cloud microphysics scheme on the representation of longwave cloud radiative forcing (LWCRF) and its impact on the atmosphere in global cloud-system-resolving simulations. A new double-moment bulk cloud microphysics scheme is used, and the simulated results are compared with those of a previous study. It is demonstrated that improvements within the new cloud microphysics scheme have the potential to substantially improve climate simulations. The new cloud microphysics scheme represents a realistic spatial distribution of the cloud fraction and LWCRF, particularly near the tropopause. The improvement in the cirrus cloud-top height by the new cloud microphysics scheme substantially reduces the warm bias in atmospheric temperature from the previous simulation via LWCRF by the cirrus clouds. The conversion rate of cloud ice to snow and gravitational sedimentation of cloud ice are the most important parameters for determining the strength of the radiative heating near the tropopause and its impact on atmospheric temperature.

Full access
Yohei Yamada, Masaki Satoh, Masato Sugi, Chihiro Kodama, Akira T. Noda, Masuo Nakano, and Tomoe Nasuno

Abstract

Future changes in tropical cyclone (TC) activity and structure are investigated using the outputs of a 14-km mesh climate simulation. A set of 30-yr simulations was performed under present-day and warmer climate conditions using a nonhydrostatic icosahedral atmospheric model with explicitly calculated convection. The model projected that the global frequency of TCs is reduced by 22.7%, the ratio of intense TCs is increased by 6.6%, and the precipitation rate within 100 km of the TC center increased by 11.8% under warmer climate conditions. These tendencies are consistent with previous studies using a hydrostatic global model with cumulus parameterization.

The responses of vertical and horizontal structures to global warming are investigated for TCs with the same intensity categories. For TCs whose minimum sea level pressure (SLP) reaches less than 980 hPa, the model predicted that tangential wind increases in the outside region of the eyewall. Increases in the tangential wind are related to the elevation of the tropopause caused by global warming. The tropopause rise induces an upward extension of the eyewall, resulting in an increase in latent heating in the upper layers of the inclined eyewall. Thus, SLP is reduced underneath the warmed eyewall regions through hydrostatic adjustment. The altered distribution of SLP enhances tangential winds in the outward region of the eyewall cloud. Hence, this study shows that the horizontal scale of TCs defined by a radius of 12 m s−1 surface wind is projected to increase compared with the same intensity categories for SLP less than 980 hPa.

Open access
Ying-Wen Chen, Tatsuya Seiki, Chihiro Kodama, Masaki Satoh, Akira T. Noda, and Yohei Yamada

Abstract

This study examines cloud responses to global warming using a global nonhydrostatic model with two different cloud microphysics schemes. The cloud microphysics schemes tested here are the single- and double-moment schemes with six water categories: these schemes are referred to as NSW6 and NDW6, respectively. Simulations of one year for NSW6 and one boreal summer for NDW6 are performed using the nonhydrostatic icosahedral atmospheric model with a mesh size of approximately 14 km. NSW6 and NDW6 exhibit similar changes in the visible cloud fraction under conditions of global warming. The longwave (LW) cloud radiative feedbacks in NSW6 and NDW6 are within the upper half of the phase 5 of the Coupled Model Intercomparison Project (CMIP5)–Cloud Feedback Model Intercomparison Project 2 (CFMIP2) range. The LW cloud radiative feedbacks are mainly attributed to cirrus clouds, which prevail more in the tropics under global warming conditions. For NDW6, the LW cloud radiative feedbacks from cirrus clouds also extend to midlatitudes. The changes in cirrus clouds and their effects on LW cloud radiative forcing (LWCRF) are assessed based on changes in the effective radii of ice hydrometeors () and the cloud fraction. It was determined that an increase in has a nonnegligible impact on LWCRF compared with an increase in cloud fraction.

Full access
Ying-Wen Chen, Masaki Satoh, Chihiro Kodama, Akira T. Noda, and Yohei Yamada

Abstract

This study examines projections of high clouds related to sea surface temperature (SST) change using 14-km simulation output from NICAM, a global cloud system–resolving model. This study focuses on the vertical and horizontal structure of high cloud response to the SST pattern and how these cloud responses are linked to ice hydrometeors, such as cloud ice, snow, and graupel, which are not resolved by conventional general circulation models (GCMs). Under the present climate, the vertical and horizontal structure of the simulated increase in tropical high cloud amount for positive tropical mean HadISST SST anomalies has similar behavior to that of the GCM-Oriented CALIPSO Cloud Product (GOCCP) cloud fraction for HadISST SST. We further show that cloud ice is the main contributor to the simulated high cloud amount. Under a warming climate, the composite vertical and horizontal structure of the tropical high cloud response to the SST shows similar behavior to that under the present climate, but the amplitude of the variation is greater by a factor of 1.5 and the variation is more widespread. This amplification contributes to the high cloud increase under the warming climate, which is directly linked to the wider spatial extent of cloud ice in the eastern Pacific region. This study specifically reveals the similarity of the patterns of the responses of the high cloud fraction and cloud ice to global warming, indicating that an appropriate treatment of the complete spectrum of ice hydrometeors in global climate models is key to simulating high clouds and their response to global warming.

Open access