Search Results
You are looking at 1 - 1 of 1 items for
- Author or Editor: Chiu-Ying Lam x
- Refine by Access: All Content x
Abstract
Severe Tropical Storm Maggie crossed Hong Kong, China, in June 1999. The dual-Doppler winds of Maggie captured by the Hong Kong Observatory's (HKO) S-band Doppler weather radar array were studied. The tracks of Maggie's vorticity centers at 1–3-km levels were analyzed and compared with that at the surface as determined from the wind observations of automatic weather stations. The results indicated that the storm had a vertical tilt toward the west to northwest during the transit over Hong Kong. The tracks also deviated significantly from the deep-layer environmental steering flow. The southward movement and vertical tilt could be partly attributed to the easterly vertical shear in the ambient flow. But the terrain of Hong Kong could have also played a significant role in the lowest 1 km of the atmosphere. The tendency of the storm track to avoid mountains was well illustrated and may serve as a useful forecasting guidance indicator for tropical areas with significant terrain. Experimental runs of a nonhydrostatic model at 5-km resolution were able to simulate the broad west-southwestward movement of Maggie and the vertical tilt of the circulation near the center of the tropical cyclone as revealed by the dual-Doppler observations.
Abstract
Severe Tropical Storm Maggie crossed Hong Kong, China, in June 1999. The dual-Doppler winds of Maggie captured by the Hong Kong Observatory's (HKO) S-band Doppler weather radar array were studied. The tracks of Maggie's vorticity centers at 1–3-km levels were analyzed and compared with that at the surface as determined from the wind observations of automatic weather stations. The results indicated that the storm had a vertical tilt toward the west to northwest during the transit over Hong Kong. The tracks also deviated significantly from the deep-layer environmental steering flow. The southward movement and vertical tilt could be partly attributed to the easterly vertical shear in the ambient flow. But the terrain of Hong Kong could have also played a significant role in the lowest 1 km of the atmosphere. The tendency of the storm track to avoid mountains was well illustrated and may serve as a useful forecasting guidance indicator for tropical areas with significant terrain. Experimental runs of a nonhydrostatic model at 5-km resolution were able to simulate the broad west-southwestward movement of Maggie and the vertical tilt of the circulation near the center of the tropical cyclone as revealed by the dual-Doppler observations.