Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Chris S. Velden x
  • All content x
Clear All Modify Search
Brett T. Hoover and Chris S. Velden


The adjoint-derived observation impact method is used as a diagnostic to derive the impact of assimilated observations on a metric representing the forecast intensity of a tropical cyclone (TC). Storm-centered composites of observation impact and the model background state are computed across 6-hourly analysis/forecast cycles to compute the composite observation impact throughout the life cycle of Hurricane Joaquin (2015) to evaluate the impact of in situ wind and temperature observations in the upper and lower troposphere, as well as the impact of brightness temperature and precipitable water observations, on intensity forecasts with forecast lengths from 12 to 48 h. The compositing across analysis/forecast cycles allows for the exploration of consistent relationships between the synoptic-scale state of the initial conditions and the impact of observations that are interpreted as flow-dependent interactions between model background bias and correction by assimilated observations on the TC intensity forecast. The track of Hurricane Matthew (2016), with an extended period of time near the coasts of Florida, Georgia, and the Carolinas, allows for a comparison of the impact of aircraft reconnaissance observations with the impact of nearby overland rawinsonde observations available within the same radius of the TC.

Restricted access
Brett T. Hoover, Chris S. Velden, and Sharanya J. Majumdar


To efficiently and effectively prioritize resources, adaptive observations can be targeted by using some objective criteria to estimate the potential impact an initial condition perturbation (or analysis increment) in a specific region would have on the future forecast. Several objective targeting guidance techniques have been developed, including total-energy singular vectors (TESV), adjoint-derived sensitivity steering vectors (ADSSV), and the ensemble transform Kalman filter (ETKF), all of which were tested during the 2008 The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) and the Office of Naval Research Tropical Cyclone Structure-2008 (TCS-08) field experiments. An intercomparison between these techniques is performed in order to find underlying physical mechanisms in the respective guidance products, based on four tropical cyclone (TC) cases from the T-PARC/TCS-08 field campaigns. It is found that the TESV energy norm and the ADSSV response function are largely indirect measures of the TC track divergence that can be produced by an initial condition perturbation, explaining the strong correlation between these products. The downstream targets routinely chosen by the ETKF guidance system are often not found in the TESV and ADSSV guidance products, and it is found that downstream perturbations can affect the steering of a TC through the development of a Rossby wave in the subtropics that modulates the strength of the nearby subtropical ridge. It is hypothesized that the ubiquitousness of these downstream targets in the ETKF is largely due to the existence of large uncertainties downstream of the TC that are not taken into consideration by either the TESV or ADSSV techniques.

Full access