Search Results

You are looking at 1 - 10 of 67 items for

  • Author or Editor: Christa Peters-Lidard x
  • Refine by Access: All Content x
Clear All Modify Search
Christa D. Peters-Lidard
and
Luke H. Davis

Abstract

During the Southern Great Plains 1997 Hydrology Experiment, a tethersonde system was deployed at the U.S. Department of Energy’s Atmospheric Radiation Measurement Cloud and Radiation Test Bed (ARM CART) central facility. Additional measurements included several surface flux stations at the central facility and radiosondes at the ARM CART central and boundary facilities. Combined, these data support an examination of regional flux estimates obtained via the atmospheric boundary layer conservation approach. Because the tethersonde was deployed successfully only under light to moderate wind conditions, the effects of advection on estimation of regional fluxes generally are found to be small. Consistent with previous studies, direct estimation of the sensible heat flux yields more accuracy than direct estimation of the latent heat flux. Use of available energy measured at surface flux stations along with the direct sensible heat flux estimates yields latent heat estimates of similar accuracy to those obtained for the sensible heat flux. It is observed that variability in the entrainment parameter exhibits a considerable diurnal cycle, presumably related to the interplay between buoyant and shear production of turbulent kinetic energy near the entrainment zone.

Full access
Yalei You
,
S. Joseph Munchak
,
Christa Peters-Lidard
, and
Sarah Ringerud

Abstract

Rainfall retrieval algorithms for passive microwave radiometers often exploit the brightness temperature depression due to ice scattering at high-frequency channels (≥85 GHz) over land. This study presents an alternate method to estimate the daily rainfall amount using the emissivity temporal variation (i.e., Δe) under rain-free conditions at low-frequency channels (19, 24, and 37 GHz). Emissivity is derived from 10 passive microwave radiometers, including the Global Precipitation Measurement (GPM) Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer 2 (AMSR2), three Special Sensor Microwave Imager/Sounders (SSMIS), the Advanced Technology Microwave Sounder (ATMS), and four Advanced Microwave Sounding Units-A (AMSU-A). Four different satellite combination schemes are used to derive the Δe for daily rainfall estimates. They are all 10 satellites, 5 imagers, 6 satellites with very different equator crossing times, and GMI only. Results show that Δe from all 10 satellites has the best performance with a correlation of 0.60 and RMSE of 6.52 mm, compared with the Integrated Multisatellite Retrievals for GPM (IMERG) Final run product. The 6-satellites scheme has comparable performance with the all-10-satellites scheme. The 5-imagers scheme performs noticeably worse with a correlation of 0.49 and RMSE of 7.28 mm, while the GMI-only scheme performs the worst with a correlation of 0.25 and RMSE of 11.36 mm. The inferior performance from the 5-imagers and GMI-only schemes can be explained by the much longer revisit time, which cannot accurately capture the emissivity temporal variation.

Full access
Yudong Tian
,
Christa D. Peters-Lidard
, and
John B. Eylander

Abstract

A new approach to reduce biases in satellite-based estimates in real time is proposed and tested in this study. Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. Most of these efforts require timely availability of surface gauge measurements. The new proposed approach does not require gauge measurements in real time. Instead, the Bayesian logic is used to establish a statistical relationship between satellite estimates and gauge measurements from recent historical data. Then this relationship is applied to real-time satellite estimates when gauge data are not yet available. This new scheme is tested over the United States with six years of precipitation estimates from two real-time satellite products [i.e., the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product 3B42RT and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH)] and a gauge analysis dataset [i.e., the CPC unified analysis]. The first 4-yr period was used as the training period to establish a satellite–gauge relationship, which was then applied to the last 2 yr as the correction period, during which gauge data were withheld for training but only used for evaluation. This approach showed that satellite biases were reduced by 70%–100% for the summers in the correction period. In addition, even when sparse networks with only 600 or 300 gauges were used during the training period, the biases were still reduced by 60%–80% and 47%–63%, respectively. The results also show a limitation in this approach as it tends to overadjust both light and strong events toward more intermediate rain rates.

Full access
Sarah Ringerud
,
Christa Peters-Lidard
,
Joe Munchak
, and
Yalei You

Abstract

Accurate, physically based precipitation retrieval over global land surfaces is an important goal of the NASA/JAXA Global Precipitation Measurement Mission (GPM). This is a difficult problem for the passive microwave constellation, as the signal over radiometrically warm land surfaces in the microwave frequencies means that the measurements used are indirect and typically require inferring some type of relationship between an observed scattering signal and precipitation at the surface. GPM, with collocated radiometer and dual-frequency radar, is an excellent tool for tackling this problem and improving global retrievals. In the years following the launch of the GPM Core Observatory satellite, physically based passive microwave retrieval of precipitation over land continues to be challenging. Validation efforts suggest that the operational GPM passive microwave algorithm, the Goddard profiling algorithm (GPROF), tends to overestimate precipitation at the low (<5 mm h−1) end of the distribution over land. In this work, retrieval sensitivities to dynamic surface conditions are explored through enhancement of the algorithm with dynamic, retrieved information from a GPM-derived optimal estimation scheme. The retrieved parameters describing surface and background characteristics replace current static or ancillary GPROF information including emissivity, water vapor, and snow cover. Results show that adding this information decreases probability of false detection by 50% and, most importantly, the enhancements with retrieved parameters move the retrieval away from dependence on ancillary datasets and lead to improved physical consistency.

Full access
Di Wu
,
Christa Peters-Lidard
,
Wei-Kuo Tao
, and
Walter Petersen

Abstract

The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre-GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real-time forecasts were conducted utilizing the NASA-Unified Weather Research and Forecasting (NU-WRF) Model to support the daily weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are conducted with different soil initializations, one from the spatially interpolated North American Mesoscale Forecast System (NAM) and the other produced by the Land Information System (LIS) using daily analysis of bias-corrected stage IV data. Both forecasts are then compared with NAM, stage IV, and Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation (QPE) to understand the impact of land surface initialization on the predicted precipitation. In general, both NU-WRF runs are able to reproduce individual peaks of precipitation at the right time. NU-WRF is also able to replicate a better rainfall spatial distribution compared with NAM. Further sensitivity tests show that the high-resolution runs (1 and 3 km) are able to better capture the precipitation event compared to its coarser-resolution counterpart (9 km). Finally, the two sets of NU-WRF simulations produce very close rainfall characteristics in bias, spatial and temporal correlation scores, and probability density function. The land surface initialization does not show a significant impact on short-term rainfall forecast, which is largely because of high soil moisture during the field campaign period.

Full access
Andrew M. Badger
,
Christa Peters-Lidard
, and
Dalia B. Kirschbaum

Abstract

A globally consistent ground validation method for remotely sensed precipitation products is crucial for building confidence in these products. This study develops a new methodology to validate the IMERG precipitation products through the use of SMAP soil moisture changes as a proxy for precipitation occurrence. Using a standard 2 × 2 contingency table method, preliminary results provide confidence in SMAP’s ability to be utilized as a validation tool for IMERG as results are comparable to previous validation studies. However, the method allows for an overestimate of false alarm frequency due to light precipitation events that can evaporate before the subsequent SMAP overpass and changes in overpass-to-overpass SMAP soil moisture that are within the range of SMAP uncertainty. To counter these issues, a 3 × 3 contingency table is used to reduce noise and extract more signal from the detection method. Through the use of this novel approach, the validation method produces a global mean POD of 0.64 and global mean FAR of 0.40, the first global-scale ground validation skill scores for the IMERG products. Advancing the method to validate precipitation quantity and the development of a real-time validation for the IMERG Early product are the crucial next developments.

Significance Statement

We wanted to see if there was a method in which remotely sensed precipitation observations could be validated at a near-global scale for land areas. Scientific literature is filled with studies that validate various precipitation datasets over local-to-regional scales, with very few extending beyond that domain. This study provides a robust first attempt at validating a global precipitation product at a global scale using changes in remotely sensed soil moisture as an independent proxy for precipitation presence/absence. While the method demonstrates that there is skill in using soil moisture as a tool to validate precipitation at the global scale, we find that there are still instances of a systemic bias for arid climate regimes. This method lays the groundwork for future studies to provide a comprehensive global validation in a globally consistent manner.

Full access
Soni Yatheendradas
,
David M. Mocko
,
Christa Peters-Lidard
, and
Sujay Kumar

Abstract

Using information theory, our study quantifies the importance of selected indicators for the U.S. Drought Monitor (USDM) maps. We use the technique of mutual information (MI) to measure the importance of any indicator to the USDM, and because MI is derived solely from the data, our findings are independent of any model structure (conceptual, physically-based, or empirical). We also compare these MIs against the drought representation effectiveness ratings in the North America Drought Indices and Indicators Assessment (NADIIA) survey for Koeppen climate zones. This reveals: [1] agreement between some ratings and our MI values (high for example indicators like Standardized Precipitation-Evapotranspiration Index or SPEI); [2] some divergences (for example, soil moisture has high ratings but near-zero MIs for ESA-CCI soil moisture in the Western U.S., indicating the need of another remotely sensed soil moisture source); and [3] new insights into the importance of variables such as Snow Water Equivalent (SWE) that are not included in sources like NADIIA. Further analysis of the MI results yields findings related to: [1] hydrological mechanisms (summertime SWE domination during individual drought events through snowmelt into the water-scarce soil); [2] hydroclimatic types (the top pair of inputs in the Western and non-Western regions are SPEIs and soil moistures respectively); and [3] predictability (high for the California 2012-2017 event, with longer-timescale indicators dominating). Finally, the high MIs between multiple indicators jointly and the USDM indicate potentially high drought forecasting accuracies achievable using only model-based inputs, and the potential for global drought monitoring using only remotely sensed inputs, especially for locations having insufficient in situ observations.

Restricted access
Grey S. Nearing
,
Benjamin L. Ruddell
,
Martyn P. Clark
,
Bart Nijssen
, and
Christa Peters-Lidard

Abstract

We propose a conceptual and theoretical foundation for information-based model benchmarking and process diagnostics that provides diagnostic insight into model performance and model realism. We benchmark against a bounded estimate of the information contained in model inputs to obtain a bounded estimate of information lost due to model error, and we perform process-level diagnostics by taking differences between modeled versus observed transfer entropy networks. We use this methodology to reanalyze the recent Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) land model intercomparison project that includes the following models: CABLE, CH-TESSEL, COLA-SSiB, ISBA-SURFEX, JULES, Mosaic, Noah, and ORCHIDEE. We report that these models (i) use only roughly half of the information available from meteorological inputs about observed surface energy fluxes, (ii) do not use all information from meteorological inputs about long-term Budyko-type water balances, (iii) do not capture spatial heterogeneities in surface processes, and (iv) all suffer from similar patterns of process-level structural error. Because the PLUMBER intercomparison project did not report model parameter values, it is impossible to know whether process-level error patterns are due to model structural error or parameter error, although our proposed information-theoretic methodology could distinguish between these two issues if parameter values were reported. We conclude that there is room for significant improvement to the current generation of land models and their parameters. We also suggest two simple guidelines to make future community-wide model evaluation and intercomparison experiments more informative.

Full access
Yudong Tian
,
Christa D. Peters-Lidard
,
Bhaskar J. Choudhury
, and
Matthew Garcia

Abstract

In this study, the recent work of Gottschalck et al. and Ebert et al. is extended by assessing the suitability of two Tropical Rainfall Measuring Mission (TRMM)-based precipitation products for hydrological land data assimilation applications. The two products are NASA’s gauge-corrected TRMM 3B42 Version 6 (3B42), and the satellite-only NOAA Climate Prediction Center (CPC) morphing technique (CMORPH). The two products were evaluated against ground-based rain gauge–only and gauge-corrected Doppler radar measurements. The analyses were performed at multiple time scales, ranging from annual to diurnal, for the period March 2003 through February 2006. The analyses show that at annual or seasonal time scales, TRMM 3B42 has much lower biases and RMS errors than CMORPH. CMORPH shows season-dependent biases, with overestimation in summer and underestimation in winter. This leads to 50% higher RMS errors in CMORPH’s area-averaged daily precipitation than TRMM 3B42. At shorter time scales (5 days or less), CMORPH has slightly less uncertainty, and about 10%–20% higher probability of detection of rain events than TRMM 3B42. In addition, the satellite estimates detect more high-intensity events, causing a remarkable shift in precipitation spectrum. Summertime diurnal cycles in the United States are well captured by both products, although the 8-km CMORPH seems to capture more diurnal features than the 0.25° CMORPH or 3B42 products. CMORPH tends to overestimate the amplitude of the diurnal cycles, particularly in the central United States. Possible causes for the discrepancies between these products are discussed.

Full access
Sujay V. Kumar
,
Kenneth W. Harrison
,
Christa D. Peters-Lidard
,
Joseph A. Santanello Jr.
, and
Dalia Kirschbaum

Abstract

Observing system simulation experiments (OSSEs) are often conducted to evaluate the worth of existing data and data yet to be collected from proposed new missions. As missions increasingly require a broader “Earth systems” focus, it is important that the OSSEs capture the potential benefits of the observations on end-use applications. Toward this end, the results from the OSSEs must also be evaluated with a suite of metrics that capture the value, uncertainty, and information content of the observations while factoring in both science and societal impacts. This article presents a soil moisture OSSE that employs simulated L-band measurements and assesses its utility toward improving drought and flood risk estimates using the NASA Land Information System (LIS). A decision-theory-based analysis is conducted to assess the economic utility of the observations toward improving these applications. The results suggest that the improvements in surface soil moisture, root-zone soil moisture, and total runoff fields obtained through the assimilation of L-band measurements are effective in providing improvements in the drought and flood risk assessments as well. The decision-theory analysis not only demonstrates the economic utility of observations but also shows that the use of probabilistic information from the model simulations is more beneficial compared to the use of corresponding deterministic estimates. The experiment also demonstrates the value of a comprehensive modeling environment such as LIS for conducting end-to-end OSSEs by linking satellite observations, physical models, data assimilation algorithms, and end-use application models in a single integrated framework.

Full access