Search Results

You are looking at 1 - 10 of 67 items for

  • Author or Editor: Christa Peters-Lidard x
  • Refine by Access: All Content x
Clear All Modify Search
Christa D. Peters-Lidard
and
Luke H. Davis

Abstract

During the Southern Great Plains 1997 Hydrology Experiment, a tethersonde system was deployed at the U.S. Department of Energy’s Atmospheric Radiation Measurement Cloud and Radiation Test Bed (ARM CART) central facility. Additional measurements included several surface flux stations at the central facility and radiosondes at the ARM CART central and boundary facilities. Combined, these data support an examination of regional flux estimates obtained via the atmospheric boundary layer conservation approach. Because the tethersonde was deployed successfully only under light to moderate wind conditions, the effects of advection on estimation of regional fluxes generally are found to be small. Consistent with previous studies, direct estimation of the sensible heat flux yields more accuracy than direct estimation of the latent heat flux. Use of available energy measured at surface flux stations along with the direct sensible heat flux estimates yields latent heat estimates of similar accuracy to those obtained for the sensible heat flux. It is observed that variability in the entrainment parameter exhibits a considerable diurnal cycle, presumably related to the interplay between buoyant and shear production of turbulent kinetic energy near the entrainment zone.

Full access
Soni Yatheendradas
,
David M. Mocko
,
Christa Peters-Lidard
, and
Sujay Kumar

Abstract

Using information theory, our study quantifies the importance of selected indicators for the U.S. Drought Monitor (USDM) maps. We use the technique of mutual information (MI) to measure the importance of any indicator to the USDM, and because MI is derived solely from the data, our findings are independent of any model structure (conceptual, physically based, or empirical). We also compare these MIs against the drought representation effectiveness ratings in the North America Drought Indices and Indicators Assessment (NADIIA) survey for Köppen climate zones. This reveals 1) agreement between some ratings and our MI values [high for example indicators like standardized precipitation evapotranspiration index (SPEI)]; 2) some divergences (e.g., soil moisture has high ratings but near-zero MIs for ESA Climate Change Initiative (CCI) soil moisture in the Western United States, indicating the need of another remotely sensed soil moisture source); and 3) new insights into the importance of variables such as snow water equivalent (SWE) that are not included in sources like NADIIA. Further analysis of the MI results yields findings related to 1) hydrological mechanisms (summertime SWE domination during individual drought events through snowmelt into the water-scarce soil); 2) hydroclimatic types (the top pair of inputs in the Western and non-Western regions are SPEIs and soil moistures, respectively); and 3) predictability (high for the California 2012–17 event, with longer-time scale indicators dominating). Finally, the high MIs between multiple indicators jointly and the USDM indicate potentially high drought forecasting accuracies achievable using only model-based inputs, and the potential for global drought monitoring using only remotely sensed inputs, especially for locations having insufficient in situ observations.

Significance Statement

Drought maps from the U.S. Drought Monitor and the Objective Short- and Long-Term Drought Indicator Blends and Blend Equivalents are integrated information sources of the different types of drought. Multiple indicators go into creation of these maps, yet it is usually not clear to both public and private stakeholders like local agencies and insurance companies about the importance of any indicator in any region and season to the drought maps. Our study provides such objective information to enable understanding the mechanism and type of drought occurring at a location, season, and possibly event of interest, as well as to potentially aid in better drought monitoring and forecasting using smaller custom sets of indicators.

Restricted access
Yudong Tian
,
Christa D. Peters-Lidard
,
Bhaskar J. Choudhury
, and
Matthew Garcia

Abstract

In this study, the recent work of Gottschalck et al. and Ebert et al. is extended by assessing the suitability of two Tropical Rainfall Measuring Mission (TRMM)-based precipitation products for hydrological land data assimilation applications. The two products are NASA’s gauge-corrected TRMM 3B42 Version 6 (3B42), and the satellite-only NOAA Climate Prediction Center (CPC) morphing technique (CMORPH). The two products were evaluated against ground-based rain gauge–only and gauge-corrected Doppler radar measurements. The analyses were performed at multiple time scales, ranging from annual to diurnal, for the period March 2003 through February 2006. The analyses show that at annual or seasonal time scales, TRMM 3B42 has much lower biases and RMS errors than CMORPH. CMORPH shows season-dependent biases, with overestimation in summer and underestimation in winter. This leads to 50% higher RMS errors in CMORPH’s area-averaged daily precipitation than TRMM 3B42. At shorter time scales (5 days or less), CMORPH has slightly less uncertainty, and about 10%–20% higher probability of detection of rain events than TRMM 3B42. In addition, the satellite estimates detect more high-intensity events, causing a remarkable shift in precipitation spectrum. Summertime diurnal cycles in the United States are well captured by both products, although the 8-km CMORPH seems to capture more diurnal features than the 0.25° CMORPH or 3B42 products. CMORPH tends to overestimate the amplitude of the diurnal cycles, particularly in the central United States. Possible causes for the discrepancies between these products are discussed.

Full access
Yalei You
,
S. Joseph Munchak
,
Christa Peters-Lidard
, and
Sarah Ringerud

Abstract

Rainfall retrieval algorithms for passive microwave radiometers often exploit the brightness temperature depression due to ice scattering at high-frequency channels (≥85 GHz) over land. This study presents an alternate method to estimate the daily rainfall amount using the emissivity temporal variation (i.e., Δe) under rain-free conditions at low-frequency channels (19, 24, and 37 GHz). Emissivity is derived from 10 passive microwave radiometers, including the Global Precipitation Measurement (GPM) Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer 2 (AMSR2), three Special Sensor Microwave Imager/Sounders (SSMIS), the Advanced Technology Microwave Sounder (ATMS), and four Advanced Microwave Sounding Units-A (AMSU-A). Four different satellite combination schemes are used to derive the Δe for daily rainfall estimates. They are all 10 satellites, 5 imagers, 6 satellites with very different equator crossing times, and GMI only. Results show that Δe from all 10 satellites has the best performance with a correlation of 0.60 and RMSE of 6.52 mm, compared with the Integrated Multisatellite Retrievals for GPM (IMERG) Final run product. The 6-satellites scheme has comparable performance with the all-10-satellites scheme. The 5-imagers scheme performs noticeably worse with a correlation of 0.49 and RMSE of 7.28 mm, while the GMI-only scheme performs the worst with a correlation of 0.25 and RMSE of 11.36 mm. The inferior performance from the 5-imagers and GMI-only schemes can be explained by the much longer revisit time, which cannot accurately capture the emissivity temporal variation.

Full access
Sarah Ringerud
,
Christa Peters-Lidard
,
Joe Munchak
, and
Yalei You

Abstract

Accurate, physically based precipitation retrieval over global land surfaces is an important goal of the NASA/JAXA Global Precipitation Measurement Mission (GPM). This is a difficult problem for the passive microwave constellation, as the signal over radiometrically warm land surfaces in the microwave frequencies means that the measurements used are indirect and typically require inferring some type of relationship between an observed scattering signal and precipitation at the surface. GPM, with collocated radiometer and dual-frequency radar, is an excellent tool for tackling this problem and improving global retrievals. In the years following the launch of the GPM Core Observatory satellite, physically based passive microwave retrieval of precipitation over land continues to be challenging. Validation efforts suggest that the operational GPM passive microwave algorithm, the Goddard profiling algorithm (GPROF), tends to overestimate precipitation at the low (<5 mm h−1) end of the distribution over land. In this work, retrieval sensitivities to dynamic surface conditions are explored through enhancement of the algorithm with dynamic, retrieved information from a GPM-derived optimal estimation scheme. The retrieved parameters describing surface and background characteristics replace current static or ancillary GPROF information including emissivity, water vapor, and snow cover. Results show that adding this information decreases probability of false detection by 50% and, most importantly, the enhancements with retrieved parameters move the retrieval away from dependence on ancillary datasets and lead to improved physical consistency.

Full access
Joseph A. Santanello Jr.
,
Christa D. Peters-Lidard
, and
Sujay V. Kumar

Abstract

The inherent coupled nature of earth’s energy and water cycles places significant importance on the proper representation and diagnosis of land–atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture–precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA’s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) mesoscale model and simulations performed over the U.S. Southern Great Plains. The behavior of different planetary boundary layers (PBL) and land surface scheme couplings in LIS–WRF are examined in the context of the evolution of thermodynamic quantities that link the surface soil moisture condition to the PBL regime, clouds, and precipitation. Specifically, the tendency toward saturation in the PBL is quantified by the lifting condensation level (LCL) deficit and addressed as a function of time and space. The sensitivity of the LCL deficit to the soil moisture condition is indicative of the strength of LoCo, where both positive and negative feedbacks can be identified. Overall, this methodology can be applied to any model or observations and is a crucial step toward improved evaluation and quantification of LoCo within models, particularly given the advent of next-generation satellite measurements of PBL and land surface properties along with advances in data assimilation schemes.

Full access
Sujay V. Kumar
,
Christa D. Peters-Lidard
,
David Mocko
, and
Yudong Tian

Abstract

The downwelling shortwave radiation on the earth’s land surface is affected by the terrain characteristics of slope and aspect. These adjustments, in turn, impact the evolution of snow over such terrain. This article presents a multiscale evaluation of the impact of terrain-based adjustments to incident shortwave radiation on snow simulations over two midlatitude regions using two versions of the Noah land surface model (LSM). The evaluation is performed by comparing the snow cover simulations against the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product. The model simulations are evaluated using categorical measures, such as the probability of detection of “yes” events (PODy), which measure the fraction of snow cover presence that was correctly simulated, and false alarm ratio (FAR), which measures the fraction of no-snow events that was incorrectly simulated. The results indicate that the terrain-based correction of radiation leads to systematic improvements in the snow cover estimates in both domains and in both LSM versions (with roughly 12% overall improvement in PODy and 5% improvement in FAR), with larger improvements observed during snow accumulation and melt periods. Increased contribution to PODy and FAR improvements is observed over the north- and south-facing slopes, when the overall improvements are stratified to the four cardinal aspect categories. A two-dimensional discrete Haar wavelet analysis for the two study areas indicates that the PODy improvements in snow cover estimation drop to below 10% at scales coarser than 16 km, whereas the FAR improvements are below 10% at scales coarser than 4 km.

Full access
Dalia Kirschbaum
,
Robert Adler
,
David Adler
,
Christa Peters-Lidard
, and
George Huffman

Abstract

It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally because of the dearth of landslide data and consistent precipitation information. This study uses a newly developed global landslide catalog (GLC) and a 13-yr satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and rainfall-triggered landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan arc, and central eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the global scale in order to improve landslide cataloging and attempt to quantify landslide triggering at daily, monthly, and yearly time scales.

Full access
Yudong Tian
,
Christa D. Peters-Lidard
, and
John B. Eylander

Abstract

A new approach to reduce biases in satellite-based estimates in real time is proposed and tested in this study. Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. Most of these efforts require timely availability of surface gauge measurements. The new proposed approach does not require gauge measurements in real time. Instead, the Bayesian logic is used to establish a statistical relationship between satellite estimates and gauge measurements from recent historical data. Then this relationship is applied to real-time satellite estimates when gauge data are not yet available. This new scheme is tested over the United States with six years of precipitation estimates from two real-time satellite products [i.e., the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product 3B42RT and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH)] and a gauge analysis dataset [i.e., the CPC unified analysis]. The first 4-yr period was used as the training period to establish a satellite–gauge relationship, which was then applied to the last 2 yr as the correction period, during which gauge data were withheld for training but only used for evaluation. This approach showed that satellite biases were reduced by 70%–100% for the summers in the correction period. In addition, even when sparse networks with only 600 or 300 gauges were used during the training period, the biases were still reduced by 60%–80% and 47%–63%, respectively. The results also show a limitation in this approach as it tends to overadjust both light and strong events toward more intermediate rain rates.

Full access
Yalei You
,
Christa Peters-Lidard
,
Joseph Turk
,
Sarah Ringerud
, and
Song Yang

Abstract

Current microwave precipitation retrieval algorithms utilize the instantaneous brightness temperature (TB) to estimate precipitation rate. This study presents a new idea that can be used to improve existing algorithms: using TB temporal variation from the microwave radiometer constellation. As a proof of concept, microwave observations from eight polar-orbiting satellites are utilized to derive . Results show that correlates more strongly with precipitation rate than the instantaneous TB. Particularly, the correlation with precipitation rate improved to −0.6 by using over the Rocky Mountains and north of 45°N, while the correlation is only −0.1 by using TB. The underlying reason is that largely eliminates the negative influence from snow-covered land, which frequently is misidentified as precipitation. Another reason is that is less affected by environmental variation (e.g., temperature, water vapor). Further analysis shows that the magnitude of the correlation between and precipitation rate is dependent on the satellite revisit frequency. Finally, it is shown that the retrieval results from are superior to that from TB, with the largest improvement in winter. Additionally, the retrieved precipitation rate over snow-covered regions by only using at 89 GHz agrees well with the ground radar observations, which opens new opportunities to retrieve precipitation in high latitudes for sensors with the highest frequency at ~89 GHz. This study implies that a geostationary microwave radiometer can significantly improve precipitation retrieval performance. It also highlights the importance of maintaining the current passive microwave satellite constellation.

Full access