Search Results

You are looking at 1 - 10 of 65 items for

  • Author or Editor: Christian D. Kummerow x
  • Refine by Access: All Content x
Clear All Modify Search
Richard M. Schulte
and
Christian D. Kummerow

Abstract

Satellite-based oceanic precipitation estimates, particularly those derived from the Global Precipitation Measurement (GPM) satellite and CloudSat, suffer from significant disagreement over regions of the globe where warm rain processes are dominant. GPM estimates of average rain rate tend to be lower than CloudSat estimates, due in part to GPM being less sensitive to shallow and/or light precipitation. Using coincident observations between GPM and CloudSat, we find that the GPM_2BCMB product misses about two-thirds of total accumulated warm rain compared to the CloudSat 2C-RAIN-PROFILE product. This difference becomes much smaller when products are compared at 1000 m above the surface (mitigating surface clutter issues) and when forcing the frequency of rain from CloudSat to match the frequency from GPM (mitigating sensitivity issues). However, even then a gap of about 25% remains. Using an optimal estimation retrieval algorithm on the underlying data, we retrieve a similar result, but find that the remaining difference between the GPM and CloudSat retrieved rain rates can be almost entirely accounted for by inconsistent assumptions about the shape of the drop size distribution (DSD) that are made in the two retrievals. We conclude that DSD assumptions contribute significantly to the relative underestimation of warm rain by GPM compared to CloudSat. Because the choice of DSD model has such a large effect on retrieved rain rates, more work is needed to determine whether the DSD models assumed by either the GPM_2BCMB or 2C-RAIN-PROFILE algorithms are actually appropriate for warm rain.

Restricted access
Richard M. Schulte
and
Christian D. Kummerow

Abstract

A flexible and physical optimal estimation-based inversion algorithm for retrieving atmospheric water vapor and cloud liquid water path from passive microwave radiometers over the global oceans is presented. The algorithm’s main strength lies in its ability to explicitly account for forward model errors that depend on the Earth incidence angle (EIA) at which a given radiometer measurement is made. Validation of total precipitable water (TPW) retrieved from Microwave Humidity Sounder (MHS) measurements against near-coincident estimates of TPW from SuomiNet GPS ground stations shows that retrieved TPW values agree closely with SuomiNet estimates, and somewhat better than values from the Microwave Integrated Retrieval System that are retrieved from the same MHS instruments. More importantly, it is found that the inclusion of appropriate forward model error assumptions, which are tailored to the EIA and sea surface temperature of the scene being considered, are able to almost entirely eliminate EIA-dependent biases in retrieved TPW. This result holds true across all satellites currently carrying an MHS instrument, despite the fact that only measurements from one satellite are used to estimate forward model errors. The consistency achieved by the retrieval algorithm across all view angles suggests that other inversion algorithms, particularly those for cross-track-scanning radiometers and potential future constellations of small satellites, would benefit from the inclusion of nuanced error assumptions that consider the effect of EIA.

Full access
Graeme L. Stephens
and
Christian D. Kummerow

Abstract

This paper presents a critical review of a number of popular methods that have been developed to retrieve cloud and precipitation properties from satellite radiance measurements. The emphasis of the paper is on the retrieval uncertainties associated with these methods, as these shape future data assimilation applications, either in the form of direct radiance assimilation or assimilation of retrieved geophysical data, or even in the use of retrieved information as a source of model error characterization. It is demonstrated throughout the paper how cloud and precipitation observing systems developed around seemingly simple concepts are in fact very complex and largely underconstrained, which explains, in part, why assigning realistic errors to these properties has been so elusive in the past. Two primary sources of error that define the observing system are highlighted throughout: (i) the first source is errors associated with the identification of cloudy scenes from clear scenes and the identification of precipitation in cloudy scenes from nonprecipitating cloudy scenes. The problems of discriminating of cloud clear and cloud precipitation are illustrated using examples drawn from microwave cloud liquid water path and precipitation retrievals. (ii) The second source is errors introduced by the forward model and its related parameters. The forward model generally contains two main components: a model of the atmosphere and the cloud and precipitation structures imbedded in that atmosphere and a forward model of the radiative transfer that produces the synthetic measurement that is ultimately compared to the measurement. The vast majority of methods developed for deriving cloud and precipitation information from satellite measurements is highly sensitive to these model parameters, which merely reflects the underconstrained nature of the problem and the need for other information in deriving solutions. The cloud and precipitation retrieval examples presented in this paper are most often constructed around very unrealistic atmosphere models typically composed of just a few layers. The consequence is that the retrievals become too sensitive to the unobserved parameters of those layers and the atmosphere above and below. Clearly a better definition of the atmospheric state, and the vertical structure of clouds and precipitation, are needed to improve the information extracted from satellite observations, and it is for this reason that the combination of active and passive measurements offers much hope for improving cloud and precipitation retrievals.

Full access
Michael Garstang
and
Christian D. Kummerow
Full access
Gregory S. Elsaesser
and
Christian D. Kummerow

Abstract

In light of the upcoming launch of the Global Precipitation Measurement (GPM) mission, a parametric retrieval algorithm of the nonraining parameters over the global oceans is developed with the ability to accommodate all currently existing and planned spaceborne microwave window channel sensors and imagers. The physical retrieval is developed using all available sensor channels in a full optimal estimation inversion. This framework requires that retrieved parameters be physically consistent with all observed satellite radiances regardless of the sensor being used. The retrieval algorithm has been successfully applied to the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), the Special Sensor Microwave Imager (SSM/I), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) with geophysical parameter retrieval results comparable to independent studies using sensor-optimized algorithms. The optimal estimation diagnostics characterize the retrieval further, providing errors associated with each of the retrieved parameters, indicating whether the retrieved state is physically consistent with observed radiances, and yielding information on how well simulated radiances agree with observed radiances. This allows for the quantitative assessment of potential calibration issues in either the model or sensor. In addition, there is an expected, consistent response of these diagnostics based on the scene being observed, such as in the case of a raining scene, allowing for the emergence of a rainfall detection scheme providing a new capability in rainfall identification for use in passive microwave rainfall and cloud property retrievals.

Full access
Veljko Petković
and
Christian D. Kummerow

Abstract

Analyses of the Tropical Rainfall Measuring Mission (TRMM) satellite rainfall estimates reveal a substantial disagreement between its active [Precipitation Radar (PR)] and passive [TRMM Microwave Imager (TMI)] sensors over certain regions. This study focuses on understanding the role of the synoptic state of atmosphere in these discrepancies over land regions where passive microwave (PMW) retrievals are limited to scattering signals. As such the variability in the relationship between the ice-induced scattering signal and the surface rainfall is examined. Using the Amazon River and central Africa regions as a test bed, it is found that the systematic difference seen between PR and TMI rainfall estimates is well correlated with both the precipitating system structure and the level of its organization. Relying on a clustering technique to group raining scenes into three broad but distinct organizational categories, it is found that, relative to the PR, deep-organized systems are typically overestimated by TMI while the shallower ones are underestimated. Results suggest that the storm organization level can explain up to 50% of the regional systematic difference between the two sensors. Because of its potential for retrieval improvement, the ability to forecast the level of systems organization is tested. The state of the atmosphere is found to favor certain storm types when constrained by CAPE, wind shear, dewpoint depression, and vertical humidity distribution. Among other findings, the observations reveal that the ratio between boundary layer and midtropospheric moisture correlates well with the organization level of convection. If adjusted by the observed PR-to-TMI ratio under a given environment, the differences between PMW and PR rainfall estimates are diminished, at maximum, by 30% in RMSE and by 40% in the mean.

Full access
Gregory S. Elsaesser
and
Christian D. Kummerow

Abstract

The Goddard profiling algorithm (GPROF) uses Bayesian probability theory to retrieve rainfall over the global oceans. A critical component of GPROF and most Bayes theorem–based retrieval frameworks is the specification of uncertainty in the observations being utilized to retrieve the parameter of interest. In the case of GPROF, for any sensor, uncertainties in microwave brightness temperatures (Tbs) arise from radiative transfer model errors, satellite sensor noise and/or degradation, and nonlinear, scene-dependent Tb offsets added during sensor intercalibration procedures. All mentioned sources impact sensors in a varying fashion, in part because of sensor-dependent fields of view. It is found that small errors in assumed Tb uncertainty (ranging from 0.57 K at 10 GHz to 2.29 K at 85 GHz) lead to a 3.6% change in the retrieved global-average oceanic rainfall rate, and 10%–20% (20%–40%) shifts in the pixel-level (monthly) frequency distributions for given rainfall bins. A mathematical expression describing the sensitivity of retrieved rainfall to uncertainty is developed here. The strong global sensitivity is linked to rainfall variance scaling systematically as Tb varies. For ocean scenes, the same emission-dominated rainfall–Tb physics used in passive microwave rainfall retrieval is also responsible for the substantial underestimation (overestimation) of global rainfall if uncertainty is overestimated (underestimated). Proper uncertainties are required to quantify variability in surface rainfall, assess long-term trends, and provide robust rainfall benchmarks for general circulation model evaluations. The implications for assessing global and regional biases in active versus passive microwave rainfall products, and for achieving rainfall product agreement among a constellation of orbiting microwave radiometers [employed in the Global Precipitation Measurement (GPM) mission], are also discussed.

Full access
Veljko Petković
and
Christian D. Kummerow

Abstract

A spatiotemporal correlation technique has been developed to combine satellite rainfall measurements using the spatial and temporal correlation of the rainfall fields to overcome problems of limited and infrequent measurements while accounting for the measurement accuracies. The relationship between the temporal and spatial correlation of the rainfall field is exploited to provide information about rainfall beyond instantaneous measurements. The technique is developed using synthetic radar data. Nine months of Operational Program for the Exchange of Weather Radar (OPERA) data are used on grid sizes of 100, 248, and 500 km with pixel resolutions of 8, 12, and 24 km to simulate satellite fields of view and are then applied to the real satellite data over the Southwest to calculate 3-h rainfall accumulations. The results are compared with the simple averaging technique, which takes a simple mean of the measurements as a constant rainfall rate over the entire accumulation period. Using synthetic data, depending on the time separation of the measurements and their accuracy, a spatiotemporal correlation technique has shown the potential to yield improvements of up to 40% in absolute error and up to 25% in root-mean-square error when compared with the simple averaging technique. When applied to the real satellite data over the Southeast, the technique showed much less skill (general improvement of only 2%–6%).

Full access
S. Joseph Munchak
and
Christian D. Kummerow

Abstract

Although zonal mean rain rates from the Tropical Rainfall Measuring Mission (TRMM) are in good (<10%) agreement between the TRMM Microwave Imager (TMI) and precipitation radar (PR) rainfall algorithms, significant uncertainties remain in some regions where these estimates differ by as much as 30% over the period of record. Previous comparisons of these algorithms with ground validation (GV) rainfall have shown significant (>10%) biases of differing sign at various GV locations. Reducing these biases is important in the context of developing a database of cloud profiles for passive microwave retrievals that is based upon the PR-measured profiles. A retrieval framework based upon optimal estimation theory is proposed wherein three parameters describing the raindrop size distribution (DSD), ice particle size distribution, and cloud water path (cLWP) are retrieved for each radar profile. The modular nature of the framework provides the opportunity to test the sensitivity of the retrieval to the inclusion of different measurements, retrieved parameters, and models for microwave scattering properties of hydrometeors. The retrieved rainfall rate is found to be strongly sensitive to the a priori constraints in DSD and cLWP; thus, these parameters are tuned to match polarimetric radar estimates of rainfall near Kwajalein, Republic of Marshall Islands. An independent validation against gauge-tuned radar rainfall estimates at Melbourne, Florida, shows agreement within 2%, which exceeds previous algorithms’ ability to match rainfall at these two sites. Errors between observed and simulated brightness temperatures are reduced and climatological features of the DSD, as measured by disdrometers at these two locations, are also reproduced in the output of the combined algorithm.

Full access
Hirohiko Masunaga
and
Christian D. Kummerow

Abstract

A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.

Full access