Search Results

You are looking at 1 - 10 of 94 items for

  • Author or Editor: Christian Kummerow x
  • Refine by Access: All Content x
Clear All Modify Search
Christian Kummerow

Abstract

There are currently large numbers of rainfall retrieval algorithms based upon passive microwave radiances. Most of these algorithms are physically based in that they use explicit physical assumptions to derive relationships between brightness temperatures (Tb’s) and rainfall. If these assumptions involve observable quantities, then the physical basis of the algorithms can be extended to determine fundamental uncertainties in the retrieved precipitation fields. In this paper this process begins by examining the largest uncertainty in many of the physical models—the homogeneous rainfall assumption. Four months of Tropical Oceans Global Atmosphere Coupled Ocean–Atmosphere Response Experiment shipborne radar data is used to describe the horizontal characteristics of rain. The vertical hydrometeor structures needed to simulate the upwelling Tb are taken from a dynamical cloud model. Radiative transfer computations were performed using a fully three-dimensional Monte Carlo solution in order to test all aspects of the beamfilling problem. Results show that biases as well as random errors depend upon the assumed vertical structure of hydrometeors, the manner in which inhomogeneity is modeled in the retrieval, and the manner in which the radiative transfer problem is handled. Unlike previous works, the goal of this paper is not to determine a mean beamfilling correction or a vertical hydrometeor profile that should be applied to specific retrieval algorithms. Rather, it is to explore the impact of inhomogeneous rainfall upon the predicted brightness temperatures so that these relations may eventually be used to develop a physically based error model for microwave precipitation retrievals. Because the predicted Tb’s depend upon assumed cloud vertical structures, the paper offers a procedure to account for the uncertainty introduced by rainfall inhomogeneity rather than a general result. The impact of inhomogeneous rainfall upon specific algorithms must still be investigated within the context of that specific algorithm.

Full access
Christian Kummerow
and
Louis Giglio

Abstract

This paper describes a multichannel physical approach for retrieving rainfall and vertical structure information from satellite-based passive microwave observations. The algorithm makes use of statistical inversion techniques based upon theoretically calculated relations between rainfall rates and brightness temperatures. Potential errors introduced into the theoretical calculations by the unknown vertical distribution of hydrometeors are overcome by explicitly accounting for diverse hydrometcor profiles. This is accomplished by allowing for a number of different vertical distributions in the theoretical brightness temperature calculations and requiring consistency between the observed and calculated brightness temperatures. This paper will focus primarily on the theoretical aspects of the retrieval algorithm, which includes a procedure used to account for inhomogeneities of the rainfall within the satellite field of view as well as a detailed description of the algorithm as it is applied over both ocean and land surfaces. The residual error between observed and calculated brightness temperatures is found to be an important quantity in assessing the uniqueness of the solution. At is further found that the residual error is a meaningful quantity that can be used to derive expected accuracies from this retrieval technique. Examples comparing the retrieved results as well as the detailed analysis of the algorithm performance under various circumstances are the subject of a companion paper.

Full access
Christian Kummerow
and
Louis Giglio

Abstract

A multichannel physical approach for retrieving rainfall and its vertical structure from SSM/I observations is examined. While a companion paper was devoted exclusively to the description of the algorithm, its strengths, and its limitations, the main focus of this paper is to report on the results, applicability, and expected accuracies from this algorithm. Some examples are given that compare retrieved results with ground-based radar data from different geographical regions to illustrate the performance and utility of the algorithm under distinct rainfall conditions. Move quantitative validation is accomplished using two months of radar data from Darwin, Australia, and the radar network over Japan. Instantaneous comparisons at Darwin indicate that root-mean-square errors for 1.25° areas over water are 0.09 mm h−1 compared to the mean rainfall value of 0.224 mm h−1 while the correlation exceeds 0.9. Similar results are obtained over the Japanese validation site with rms errors of 0.6 1 5 mm h−1 compared to the mean of 0.880 mm h−1 and a correlation of 0.9. Results are less encouraging over land with root-mean-square errors somewhat larger than the mean rain rates and correlations of only 0.71 and 0.62 for Darwin and Japan, respectively. These validation studies are further used in combination with the theoretical treatment of expected accuracies developed in the companion paper to define error estimates on a broader scale than individual radar sites from which the errors may be analyzed. Comparisons with simpler techniques that are based on either emission or scattering measurements are used to illustrate the fact that the current algorithm, while better correlated with the emission methods over water, cannot be reduced to either of these simpler methods.

Full access
Christian Kummerow
and
Louis Giglio

Abstract

Passive microwave observations of rainfall offer the ability to obtain very accurate instantaneous estimates of rainfall. Because passive microwave instruments are confined to polar-orbiting satellites, however, such estimates must interpolate across long time periods, during which no measurements are available. In this paper the authors discuss a technique that allows one to partially overcome the sampling limitations by using frequent infrared observations from geosynchronous platforms. To accomplish this, the technique compares all coincident microwave and infrared observations. From each coincident pair, the infrared temperature threshold is selected that corresponds to an area equal to the raining area observed in the microwave image. The mean conditional rainfall rate as determined from the microwave image is then assigned to pixels in the infrared image that are colder than the selected threshold. The calibration is also applied to a fixed threshold of 235 K for comparison with established infrared techniques. Once a calibration is determined, it is applied to all infrared images. Monthly accumulations for both methods are then obtained by summing rainfall from all available infrared images. Two examples are used to evaluate the performance of the technique. The first consists of a one-month period (February 1988) over Darwin, Australia, where good validation data are available from radar and rain gauges. For this case it was found that the technique approximately doubled the rain inferred by the microwave method alone and produced exceptional agreement with the validation data. The second example involved comparisons with atoll rain gauges in the western Pacific for June 1989. Results here are overshadowed by the fact that the hourly infrared estimates from established techniques, by themselves, produced very good correlations with the rain gauges. The calibration technique was not able to improve upon these results.

Full access
Fang Wang
and
Christian Kummerow

Abstract

Cloud-resolving models (CRMs) offer an important pathway to interpret satellite observations of microphysical properties of storms. High-frequency microwave brightness temperatures (Tb s) respond to precipitating-sized ice particles and can therefore be compared with simulated Tb s at the same frequencies. By clustering the Tb vectors at these frequencies, the scene can be classified into distinct microphysical regimes (in other words, cloud types). A convective storm over the Amazon observed by the Tropical Rainfall Measuring Mission (TRMM) is simulated using the Regional Atmospheric Modeling System (RAMS) in a semi-ideal setting, and four regimes are defined within the scene using cluster analysis: the “clear sky/thin cirrus” cluster, the “cloudy” cluster, the “stratiform anvil” cluster, and the “convective” cluster. Cluster-by-cluster comparisons between the observations and the simulations disclose biases in the model that are consistent with an overproduction of supercooled water and an excess of large hail particles. While other problems cannot be completely ruled out, the method does provide some guidance to assess microphysical fidelity within each cluster or cloud type. Guided by the apparent model/observational discrepancies in the convective cloud cluster, the hail size parameter was adjusted in order to produce a greater number of smaller hail particles consistent with the observations. While the work cannot define microphysical errors in an unambiguously fashion, the cluster analysis is seen as useful to isolate individual microphysical inconsistencies that can then be addressed within each cluster of cloud type.

Full access
Eric Goldenstern
and
Christian Kummerow

Abstract

Despite its long history, improving upon current precipitation estimation techniques remains an active area of research. While many methods exist to assess precipitation, the use of satellites has allowed for near-global observation. However, satellites do not directly sense precipitation, resulting in retrieval uncertainties. Analysis of these uncertainties is typically conducted through validation studies, which, while necessary, are sensitive to local conditions. As such, predicting retrieval uncertainties where there is no validation data remains a challenge. In this study, we propose a method by which validation statistics can be extended to other regions. Using a neural network–style retrieval, the Geostationary Operational Environmental Satellite–16 (GOES-16) Precipitation Estimator using Convolutional Neural Networks (GPE-CNN), we show that, by exploiting the information content of both the satellite and ancillary meteorological data, one can predict large-scale retrieval behaviors over other regions without the need for that region’s validation data. By developing classes using satellite information content, we demonstrate bias prediction improvement of up to 83% relative to a simple extension of mean bias. Including relative humidity information improves the overall prediction by up to 98% relative to the original mean bias. Although limited in scope, this method presents a pathway toward characterizing uncertainties on a broader scale.

Restricted access
Richard M. Schulte
and
Christian D. Kummerow

Abstract

Satellite-based oceanic precipitation estimates, particularly those derived from the Global Precipitation Measurement (GPM) satellite and CloudSat, suffer from significant disagreement over regions of the globe where warm rain processes are dominant. GPM estimates of average rain rate tend to be lower than CloudSat estimates, due in part to GPM being less sensitive to shallow and/or light precipitation. Using coincident observations between GPM and CloudSat, we find that the GPM_2BCMB product misses about two-thirds of total accumulated warm rain compared to the CloudSat 2C-RAIN-PROFILE product. This difference becomes much smaller when products are compared at 1000 m above the surface (mitigating surface clutter issues) and when forcing the frequency of rain from CloudSat to match the frequency from GPM (mitigating sensitivity issues). However, even then a gap of about 25% remains. Using an optimal estimation retrieval algorithm on the underlying data, we retrieve a similar result, but find that the remaining difference between the GPM and CloudSat retrieved rain rates can be almost entirely accounted for by inconsistent assumptions about the shape of the drop size distribution (DSD) that are made in the two retrievals. We conclude that DSD assumptions contribute significantly to the relative underestimation of warm rain by GPM compared to CloudSat. Because the choice of DSD model has such a large effect on retrieved rain rates, more work is needed to determine whether the DSD models assumed by either the GPM_2BCMB or 2C-RAIN-PROFILE algorithms are actually appropriate for warm rain.

Restricted access
Richard M. Schulte
and
Christian D. Kummerow

Abstract

A flexible and physical optimal estimation-based inversion algorithm for retrieving atmospheric water vapor and cloud liquid water path from passive microwave radiometers over the global oceans is presented. The algorithm’s main strength lies in its ability to explicitly account for forward model errors that depend on the Earth incidence angle (EIA) at which a given radiometer measurement is made. Validation of total precipitable water (TPW) retrieved from Microwave Humidity Sounder (MHS) measurements against near-coincident estimates of TPW from SuomiNet GPS ground stations shows that retrieved TPW values agree closely with SuomiNet estimates, and somewhat better than values from the Microwave Integrated Retrieval System that are retrieved from the same MHS instruments. More importantly, it is found that the inclusion of appropriate forward model error assumptions, which are tailored to the EIA and sea surface temperature of the scene being considered, are able to almost entirely eliminate EIA-dependent biases in retrieved TPW. This result holds true across all satellites currently carrying an MHS instrument, despite the fact that only measurements from one satellite are used to estimate forward model errors. The consistency achieved by the retrieval algorithm across all view angles suggests that other inversion algorithms, particularly those for cross-track-scanning radiometers and potential future constellations of small satellites, would benefit from the inclusion of nuanced error assumptions that consider the effect of EIA.

Full access
Graeme L. Stephens
and
Christian D. Kummerow

Abstract

This paper presents a critical review of a number of popular methods that have been developed to retrieve cloud and precipitation properties from satellite radiance measurements. The emphasis of the paper is on the retrieval uncertainties associated with these methods, as these shape future data assimilation applications, either in the form of direct radiance assimilation or assimilation of retrieved geophysical data, or even in the use of retrieved information as a source of model error characterization. It is demonstrated throughout the paper how cloud and precipitation observing systems developed around seemingly simple concepts are in fact very complex and largely underconstrained, which explains, in part, why assigning realistic errors to these properties has been so elusive in the past. Two primary sources of error that define the observing system are highlighted throughout: (i) the first source is errors associated with the identification of cloudy scenes from clear scenes and the identification of precipitation in cloudy scenes from nonprecipitating cloudy scenes. The problems of discriminating of cloud clear and cloud precipitation are illustrated using examples drawn from microwave cloud liquid water path and precipitation retrievals. (ii) The second source is errors introduced by the forward model and its related parameters. The forward model generally contains two main components: a model of the atmosphere and the cloud and precipitation structures imbedded in that atmosphere and a forward model of the radiative transfer that produces the synthetic measurement that is ultimately compared to the measurement. The vast majority of methods developed for deriving cloud and precipitation information from satellite measurements is highly sensitive to these model parameters, which merely reflects the underconstrained nature of the problem and the need for other information in deriving solutions. The cloud and precipitation retrieval examples presented in this paper are most often constructed around very unrealistic atmosphere models typically composed of just a few layers. The consequence is that the retrievals become too sensitive to the unobserved parameters of those layers and the atmosphere above and below. Clearly a better definition of the atmospheric state, and the vertical structure of clouds and precipitation, are needed to improve the information extracted from satellite observations, and it is for this reason that the combination of active and passive measurements offers much hope for improving cloud and precipitation retrievals.

Full access
Michael Garstang
and
Christian D. Kummerow
Full access