Search Results
You are looking at 1 - 10 of 10 items for
- Author or Editor: Christophe Genthon x
- Refine by Access: All Content x
Abstract
Diagnostics of energy and moisture transport and disposal over the Antarctic polar cap (70°S to the pole) and ice sheet are extracted from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis archive over the 1979–93 period. Transport across 70°S is obtained from the 6-hourly analyses of wind, temperature, moisture, and geopotential, whereas top-of-the-atmosphere energy balance and surface energy and water fluxes are evaluated from 6- and 12-h forecasts. A full decomposition of transport is made and tabulated in terms of seasons, dynamic components (mean meridional, stationary eddy, transient eddy), and type of energy (sensible, latent, geopotential). For instance, in terms of type of energy, about 50% of the total converged to the polar cap is geopotential, which is almost entirely advected by the mean meridional circulation. Even though atmospheric moisture is very low, latent heat transport accounts for almost 20% of the total energy import, mostly by the transient eddies. In terms of dynamic components, transient eddies alone import about 50% of the total energy in the form of sensible and latent heat. Some components actually export energy from the polar cap, and the variety of signatures exhibited by the transport decomposition may prove useful to check the dynamics of climate models in the very high southern latitudes. According to the analyses, the total annual mean energy input to the polar cap south of 70°S by the atmospheric circulation is 80.8 W m−2 of horizontal surface. The short-term forecasts suggest that the oceanic import is much smaller, of the order of model and analysis uncertainties. The interannual variability of atmospheric energy convergence is unreasonably large, and it is partly, yet not quite convincingly, correlated with the El Niño–Southern Oscillation. No convincing correlation is found either between moisture convergence from analyses or surface water budget from forecasts and the El Niño–Southern Oscillation. This result contradicts a previous study using the ECMWF operational analyses, which are more prone to spurious variability than the reanalyses and associated forecasts used here. The interannual variability of moisture convergence is large but reasonable, about 25% of the annual mean. It might be useful as a control against which to check the dynamics of the hydrological cycle of climate models in the high southern latitudes.
Abstract
Diagnostics of energy and moisture transport and disposal over the Antarctic polar cap (70°S to the pole) and ice sheet are extracted from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis archive over the 1979–93 period. Transport across 70°S is obtained from the 6-hourly analyses of wind, temperature, moisture, and geopotential, whereas top-of-the-atmosphere energy balance and surface energy and water fluxes are evaluated from 6- and 12-h forecasts. A full decomposition of transport is made and tabulated in terms of seasons, dynamic components (mean meridional, stationary eddy, transient eddy), and type of energy (sensible, latent, geopotential). For instance, in terms of type of energy, about 50% of the total converged to the polar cap is geopotential, which is almost entirely advected by the mean meridional circulation. Even though atmospheric moisture is very low, latent heat transport accounts for almost 20% of the total energy import, mostly by the transient eddies. In terms of dynamic components, transient eddies alone import about 50% of the total energy in the form of sensible and latent heat. Some components actually export energy from the polar cap, and the variety of signatures exhibited by the transport decomposition may prove useful to check the dynamics of climate models in the very high southern latitudes. According to the analyses, the total annual mean energy input to the polar cap south of 70°S by the atmospheric circulation is 80.8 W m−2 of horizontal surface. The short-term forecasts suggest that the oceanic import is much smaller, of the order of model and analysis uncertainties. The interannual variability of atmospheric energy convergence is unreasonably large, and it is partly, yet not quite convincingly, correlated with the El Niño–Southern Oscillation. No convincing correlation is found either between moisture convergence from analyses or surface water budget from forecasts and the El Niño–Southern Oscillation. This result contradicts a previous study using the ECMWF operational analyses, which are more prone to spurious variability than the reanalyses and associated forecasts used here. The interannual variability of moisture convergence is large but reasonable, about 25% of the annual mean. It might be useful as a control against which to check the dynamics of the hydrological cycle of climate models in the high southern latitudes.
Abstract
Major weather forecast centers produce physically based large-scale climate analyses and predictions that can be used as proxies for missing observations and thus as full-coverage climatologies. Because of this, a global reanalysis of recent climate is being carried out at the European Centre for Medium-Range Weather Forecasts (ECMWF). At the surface of the polar ice sheets (the atmospheric boundary condition for ice evolution), observations of climate are particularly scarce. To estimate how the new ECMWF climatology might help provide climate data over the polar ice sheets, the authors present 6 years of previously analyzed surface temperature and predicted precipitation for both Greenland and Antarctica. Analyses are the result of 6-h forecasts corrected to fit with reports from weather stations. Predicted variables are not corrected but the observation-constrained analyzed fields are used to initialize forecasting cycles. In spite of a sparse coverage of the observation network, the analyzed temperature, including seasonality, is very reasonable. Interannual variability, however, appears greater than suggested by satellite observation. Mean annual precipitation in Antarctica is fairly well represented, but it is difficult to determine whether a lack of seasonality on the plateau is reasonable or not. Precipitation in coastal Greenland is often too high, and accumulation might be low inland. Mean predicted accumulations, 1594 × 1012 and 539 × 1012 kg yr−1, over the Antarctic and Greenland ice sheets, respectively, are in good agreement with previous estimates. It is reasonable to expect that the reanalysis will largely satisfy the need for a full-coverage gridded climatology of the two polar ice sheets.
Abstract
Major weather forecast centers produce physically based large-scale climate analyses and predictions that can be used as proxies for missing observations and thus as full-coverage climatologies. Because of this, a global reanalysis of recent climate is being carried out at the European Centre for Medium-Range Weather Forecasts (ECMWF). At the surface of the polar ice sheets (the atmospheric boundary condition for ice evolution), observations of climate are particularly scarce. To estimate how the new ECMWF climatology might help provide climate data over the polar ice sheets, the authors present 6 years of previously analyzed surface temperature and predicted precipitation for both Greenland and Antarctica. Analyses are the result of 6-h forecasts corrected to fit with reports from weather stations. Predicted variables are not corrected but the observation-constrained analyzed fields are used to initialize forecasting cycles. In spite of a sparse coverage of the observation network, the analyzed temperature, including seasonality, is very reasonable. Interannual variability, however, appears greater than suggested by satellite observation. Mean annual precipitation in Antarctica is fairly well represented, but it is difficult to determine whether a lack of seasonality on the plateau is reasonable or not. Precipitation in coastal Greenland is often too high, and accumulation might be low inland. Mean predicted accumulations, 1594 × 1012 and 539 × 1012 kg yr−1, over the Antarctic and Greenland ice sheets, respectively, are in good agreement with previous estimates. It is reasonable to expect that the reanalysis will largely satisfy the need for a full-coverage gridded climatology of the two polar ice sheets.
Abstract
Because many of the synoptic cyclones south of the 60°S parallel originate from 60°S and lower latitudes, nudging an atmospheric general circulation model (AGCM) with meteorological analyses at the periphery of the Antarctic region may be expected to exert a strong control on the atmospheric circulation inside the region. Here, the ECMWF reanalyses are used to nudge the atmospheric circulation of the Laboratoire de Météorologie Dynamique Zoom (LMDZ) stretched-grid AGCM in a 15-yr simulation spanning the 1979–93 period. The horizontal resolution (grid spacing) in the model reaches ∼100 km south of 60°S. Nudging is exerted along the 60°S parallel, and this is called lateral nudging for the Antarctic region. Nudging is also performed farther north, near 50° and 40°S, but this is not essential for the results discussed here. Surface pressure and winds in the atmospheric column are nudged without relaxation to maximize control by the meteorological analyses, at the expense of some “noise” confined to the latitudes where nudging is exerted. The performances of lateral nudging are evaluated with respect to station observations, the free (unnudged) model, the ECMWF reanalyses, and in limited instances with respect to nudging the surface pressure only. It is shown that the free model has limited but persistent surface pressure and geopotential defects in the Antarctic region, which are efficiently corrected by lateral nudging. Also, the laterally nudged simulations confirm, and to some extent correct, a geopotential deficiency of the ECMWF reanalyses over the east Antarctic continent previously identified by others. The monthly mean variability of surface climate at several stations along a coast-to-pole transect is analyzed. A significant fraction of the observed variability of surface pressure and temperature is reproduced. The fraction is often less than in the reanalyses. However, the differences are not large considering that the nudged model is forced at distances of hundreds to thousands of kilometers whereas the reanalyses are forced at much shorter distances, in principle right at each station site by the very station data. The variability of surface wind is significantly less well reproduced than that of pressure and temperature in both the nudged model and the reanalyses. Carefully adjusted polar physics in the LMDZ model seems to compensate for a distant observational constraint in the cases when the nudged model results appear similar or even superior to the reanalyses. Lateral nudging is less computationally intensive than global nudging, and it induces realistic variability and chronology while leaving full expression of the model physics in the region of interest. Laterally nudging an AGCM with meteorological analyses can offer complementary value over the analyses themselves, not only by producing additional atmospheric information not available from the analyses, but also by correcting possible regional defects in the analyses.
Abstract
Because many of the synoptic cyclones south of the 60°S parallel originate from 60°S and lower latitudes, nudging an atmospheric general circulation model (AGCM) with meteorological analyses at the periphery of the Antarctic region may be expected to exert a strong control on the atmospheric circulation inside the region. Here, the ECMWF reanalyses are used to nudge the atmospheric circulation of the Laboratoire de Météorologie Dynamique Zoom (LMDZ) stretched-grid AGCM in a 15-yr simulation spanning the 1979–93 period. The horizontal resolution (grid spacing) in the model reaches ∼100 km south of 60°S. Nudging is exerted along the 60°S parallel, and this is called lateral nudging for the Antarctic region. Nudging is also performed farther north, near 50° and 40°S, but this is not essential for the results discussed here. Surface pressure and winds in the atmospheric column are nudged without relaxation to maximize control by the meteorological analyses, at the expense of some “noise” confined to the latitudes where nudging is exerted. The performances of lateral nudging are evaluated with respect to station observations, the free (unnudged) model, the ECMWF reanalyses, and in limited instances with respect to nudging the surface pressure only. It is shown that the free model has limited but persistent surface pressure and geopotential defects in the Antarctic region, which are efficiently corrected by lateral nudging. Also, the laterally nudged simulations confirm, and to some extent correct, a geopotential deficiency of the ECMWF reanalyses over the east Antarctic continent previously identified by others. The monthly mean variability of surface climate at several stations along a coast-to-pole transect is analyzed. A significant fraction of the observed variability of surface pressure and temperature is reproduced. The fraction is often less than in the reanalyses. However, the differences are not large considering that the nudged model is forced at distances of hundreds to thousands of kilometers whereas the reanalyses are forced at much shorter distances, in principle right at each station site by the very station data. The variability of surface wind is significantly less well reproduced than that of pressure and temperature in both the nudged model and the reanalyses. Carefully adjusted polar physics in the LMDZ model seems to compensate for a distant observational constraint in the cases when the nudged model results appear similar or even superior to the reanalyses. Lateral nudging is less computationally intensive than global nudging, and it induces realistic variability and chronology while leaving full expression of the model physics in the region of interest. Laterally nudging an AGCM with meteorological analyses can offer complementary value over the analyses themselves, not only by producing additional atmospheric information not available from the analyses, but also by correcting possible regional defects in the analyses.
Abstract
The density and range of observations made by meteorological stations is insufficient to fully characterize decadal climate variability in Antarctica. Satellite-borne instruments, which offer a high spatial and temporal density of information, can contribute complementary data for characterizing Antarctic climate change. Here, partial melting of Antarctic snow, which significantly affects the microwave emissivity of the surface, is identified and counted over 18 yr in the 20-yr period 1980–99. The cumulated product of the surface area affected by melting and the duration of the melting event, called cumulative melting surface (CMS), is one of the three melt indices defined and discussed here. On average over the last 20 yr, the Antarctic CMS has decreased by 1.8% ± 1% yr−1, a result that is consistent with a mean January cooling of the continent recently identified from infrared satellite data. In addition, the interannual signatures of the Antarctic Oscillation, and possibly of the Southern Oscillation, are found in the melt indices.
Abstract
The density and range of observations made by meteorological stations is insufficient to fully characterize decadal climate variability in Antarctica. Satellite-borne instruments, which offer a high spatial and temporal density of information, can contribute complementary data for characterizing Antarctic climate change. Here, partial melting of Antarctic snow, which significantly affects the microwave emissivity of the surface, is identified and counted over 18 yr in the 20-yr period 1980–99. The cumulated product of the surface area affected by melting and the duration of the melting event, called cumulative melting surface (CMS), is one of the three melt indices defined and discussed here. On average over the last 20 yr, the Antarctic CMS has decreased by 1.8% ± 1% yr−1, a result that is consistent with a mean January cooling of the continent recently identified from infrared satellite data. In addition, the interannual signatures of the Antarctic Oscillation, and possibly of the Southern Oscillation, are found in the melt indices.
Abstract
A Charney–Branscome based parameterization has been tested as a way of representing the eddy sensible heat transports missing in a zonally averaged dynamic model (ZADM) of the atmosphere. The ZADM used is a zonally averaged version of a General Circulation Model (GCM). The parameterized transports in the ZADM are gaged against the corresponding fluxes explicitly simulated in the GCM, using the same zonally averaged boundary conditions in both models. The Charney–Branscome approach neglects stationary eddies and transient barotropic disturbances and relies on a set of simplifying assumptions, including the linear approximation, to describe growing transient baroclinic eddies. Nevertheless, fairly satisfactory results are obtained when the parameterization is performed interactively with the model. Compared with noninteractive tests, a very efficient restoring feedback effect between the modeled zonal-mean climate and the parameterized meridional eddy transport is identified.
Abstract
A Charney–Branscome based parameterization has been tested as a way of representing the eddy sensible heat transports missing in a zonally averaged dynamic model (ZADM) of the atmosphere. The ZADM used is a zonally averaged version of a General Circulation Model (GCM). The parameterized transports in the ZADM are gaged against the corresponding fluxes explicitly simulated in the GCM, using the same zonally averaged boundary conditions in both models. The Charney–Branscome approach neglects stationary eddies and transient barotropic disturbances and relies on a set of simplifying assumptions, including the linear approximation, to describe growing transient baroclinic eddies. Nevertheless, fairly satisfactory results are obtained when the parameterization is performed interactively with the model. Compared with noninteractive tests, a very efficient restoring feedback effect between the modeled zonal-mean climate and the parameterized meridional eddy transport is identified.
Abstract
Observations of atmospheric temperature made on the Antarctic Plateau with thermistors housed in naturally (wind) ventilated radiation shields are shown to be significantly warm biased by solar radiation. High incoming solar flux and high surface albedo result in radiation biases in Gill (multiplate)-styled shields that can occasionally exceed 10°C in summer in cases with low wind speed. Although stronger and more frequent when incoming solar radiation is high, biases exceeding 8°C are found even when solar radiation is less than 200 W m−2. Compared with sonic thermometers, which are not affected by radiation but are too complex to be routinely used for mean temperature monitoring, commercially available aspirated shields are shown to efficiently protect thermistor measurements from solar radiation biases. Most of the available in situ reports of atmospheric temperature on the Antarctic Plateau are from automatic weather stations that use passive shields and are thus likely warm biased in the summer. In spite of low power consumption, deploying aspirated shields at remote locations in such a difficult environment may be a challenge. Bias correction formulas are not easily derived and are obviously shield dependent. On the other hand, because of a strong dependence of bias to wind speed, filtering out temperature reports for wind speed less than a given threshold (about 4–6 m s−1 for the shields tested here) may be an efficient way to quality control the data, albeit at the cost of significant data loss and records that are biased toward high wind speed cases.
Abstract
Observations of atmospheric temperature made on the Antarctic Plateau with thermistors housed in naturally (wind) ventilated radiation shields are shown to be significantly warm biased by solar radiation. High incoming solar flux and high surface albedo result in radiation biases in Gill (multiplate)-styled shields that can occasionally exceed 10°C in summer in cases with low wind speed. Although stronger and more frequent when incoming solar radiation is high, biases exceeding 8°C are found even when solar radiation is less than 200 W m−2. Compared with sonic thermometers, which are not affected by radiation but are too complex to be routinely used for mean temperature monitoring, commercially available aspirated shields are shown to efficiently protect thermistor measurements from solar radiation biases. Most of the available in situ reports of atmospheric temperature on the Antarctic Plateau are from automatic weather stations that use passive shields and are thus likely warm biased in the summer. In spite of low power consumption, deploying aspirated shields at remote locations in such a difficult environment may be a challenge. Bias correction formulas are not easily derived and are obviously shield dependent. On the other hand, because of a strong dependence of bias to wind speed, filtering out temperature reports for wind speed less than a given threshold (about 4–6 m s−1 for the shields tested here) may be an efficient way to quality control the data, albeit at the cost of significant data loss and records that are biased toward high wind speed cases.
Abstract
This article reports on high-resolution (60 km) atmospheric general circulation model simulations of the Antarctic climate for the periods 1981–2000 and 2081–2100. The analysis focuses on the surface mass balance change, one of the components of the total ice sheet mass balance, and its impact on global eustatic sea level. Contrary to previous simulations, in which the authors directly used sea surface boundary conditions produced by a coupled ocean–atmosphere model for the last decades of both centuries, an anomaly method was applied here in which the present-day simulations use observed sea surface conditions, while the simulations for the end of the twenty-first century use the change in sea surface conditions taken from the coupled simulations superimposed on the present-day observations. It is shown that the use of observed oceanic boundary conditions clearly improves the simulation of the present-day Antarctic climate, compared to model runs using boundary conditions from a coupled climate model. Moreover, although the spatial patterns of the simulated climate change are similar, the two methods yield significantly different estimates of the amplitude of the future climate and surface mass balance change over the Antarctic continent. These differences are of similar magnitude as the intermodel dispersion in the current Intergovernmental Panel on Climate Change (IPCC) exercise: selecting a method for generating boundary conditions for a high-resolution model may be just as important as selecting the climate model itself. Using the anomaly method, the simulated mean surface mass balance change over the grounded ice sheet from 1981–2000 to 2081–2100 is 43-mm water equivalent per year, corresponding to a eustatic sea level decrease of 1.5 mm yr−1. A further result of this work is that future continental-mean surface mass balance changes are dominated by the coastal regions, and that high-resolution models, which better resolve coastal processes, tend to predict stronger precipitation changes than models with lower spatial resolution.
Abstract
This article reports on high-resolution (60 km) atmospheric general circulation model simulations of the Antarctic climate for the periods 1981–2000 and 2081–2100. The analysis focuses on the surface mass balance change, one of the components of the total ice sheet mass balance, and its impact on global eustatic sea level. Contrary to previous simulations, in which the authors directly used sea surface boundary conditions produced by a coupled ocean–atmosphere model for the last decades of both centuries, an anomaly method was applied here in which the present-day simulations use observed sea surface conditions, while the simulations for the end of the twenty-first century use the change in sea surface conditions taken from the coupled simulations superimposed on the present-day observations. It is shown that the use of observed oceanic boundary conditions clearly improves the simulation of the present-day Antarctic climate, compared to model runs using boundary conditions from a coupled climate model. Moreover, although the spatial patterns of the simulated climate change are similar, the two methods yield significantly different estimates of the amplitude of the future climate and surface mass balance change over the Antarctic continent. These differences are of similar magnitude as the intermodel dispersion in the current Intergovernmental Panel on Climate Change (IPCC) exercise: selecting a method for generating boundary conditions for a high-resolution model may be just as important as selecting the climate model itself. Using the anomaly method, the simulated mean surface mass balance change over the grounded ice sheet from 1981–2000 to 2081–2100 is 43-mm water equivalent per year, corresponding to a eustatic sea level decrease of 1.5 mm yr−1. A further result of this work is that future continental-mean surface mass balance changes are dominated by the coastal regions, and that high-resolution models, which better resolve coastal processes, tend to predict stronger precipitation changes than models with lower spatial resolution.
Abstract
FlowCapt acoustic sensors, designed for measuring the aeolian transport of snow fluxes, are compared to the snow particle counter S7optical sensor, considered herein as the reference. They were compared in the French Alps at the Lac Blanc Pass, where a bench test for the aeolian transport of snow was set up. The two existing generations of FlowCapt are compared. Both seem to be good detectors for the aeolian transport of snow, especially for transport events with a flux above 1 g m−2 s−1. The second-generation FlowCapt is also compared in terms of quantification. The aeolian snow mass fluxes and snow quantity transported recorded by the second-generation FlowCapt are close to the integrative snow particle counter S7 fluxes for an event without precipitation, but they are underestimated when an event with precipitation is considered. When the winter season is considered, for integrative snow particle counter S7 fluxes above 20 g m−2 s−1, the second-generation FlowCapt fluxes are underestimated, regardless of precipitation. In conclusion, both generations of FlowCapt can be used as a drifting snow detector and the second generation can record an underestimation of the quantity of snow transported at one location: over the winter season, the quantity of snow transported recorded by the SPC is between 4 and 6 times greater than the quantity recorded by the second-generation FlowCapt.
Abstract
FlowCapt acoustic sensors, designed for measuring the aeolian transport of snow fluxes, are compared to the snow particle counter S7optical sensor, considered herein as the reference. They were compared in the French Alps at the Lac Blanc Pass, where a bench test for the aeolian transport of snow was set up. The two existing generations of FlowCapt are compared. Both seem to be good detectors for the aeolian transport of snow, especially for transport events with a flux above 1 g m−2 s−1. The second-generation FlowCapt is also compared in terms of quantification. The aeolian snow mass fluxes and snow quantity transported recorded by the second-generation FlowCapt are close to the integrative snow particle counter S7 fluxes for an event without precipitation, but they are underestimated when an event with precipitation is considered. When the winter season is considered, for integrative snow particle counter S7 fluxes above 20 g m−2 s−1, the second-generation FlowCapt fluxes are underestimated, regardless of precipitation. In conclusion, both generations of FlowCapt can be used as a drifting snow detector and the second generation can record an underestimation of the quantity of snow transported at one location: over the winter season, the quantity of snow transported recorded by the SPC is between 4 and 6 times greater than the quantity recorded by the second-generation FlowCapt.
The Concordiasi project is making innovative observations of the atmosphere above Antarctica. The most important goals of the Concordiasi are as follows:
-
To enhance the accuracy of weather prediction and climate records in Antarctica through the assimilation of in situ and satellite data, with an emphasis on data provided by hyperspectral infrared sounders. The focus is on clouds, precipitation, and the mass budget of the ice sheets. The improvements in dynamical model analyses and forecasts will be used in chemical-transport models that describe the links between the polar vortex dynamics and ozone depletion, and to advance the under understanding of the Earth system by examining the interactions between Antarctica and lower latitudes.
-
To improve our understanding of microphysical and dynamical processes controlling the polar ozone, by providing the first quasi-Lagrangian observations of stratospheric ozone and particles, in addition to an improved characterization of the 3D polar vortex dynamics. Techniques for assimilating these Lagrangian observations are being developed.
A major Concordiasi component is a field experiment during the austral springs of 2008–10. The field activities in 2010 are based on a constellation of up to 18 long-duration stratospheric super-pressure balloons (SPBs) deployed from the McMurdo station. Six of these balloons will carry GPS receivers and in situ instruments measuring temperature, pressure, ozone, and particles. Twelve of the balloons will release dropsondes on demand for measuring atmospheric parameters. Lastly, radiosounding measurements are collected at various sites, including the Concordia station.
The Concordiasi project is making innovative observations of the atmosphere above Antarctica. The most important goals of the Concordiasi are as follows:
-
To enhance the accuracy of weather prediction and climate records in Antarctica through the assimilation of in situ and satellite data, with an emphasis on data provided by hyperspectral infrared sounders. The focus is on clouds, precipitation, and the mass budget of the ice sheets. The improvements in dynamical model analyses and forecasts will be used in chemical-transport models that describe the links between the polar vortex dynamics and ozone depletion, and to advance the under understanding of the Earth system by examining the interactions between Antarctica and lower latitudes.
-
To improve our understanding of microphysical and dynamical processes controlling the polar ozone, by providing the first quasi-Lagrangian observations of stratospheric ozone and particles, in addition to an improved characterization of the 3D polar vortex dynamics. Techniques for assimilating these Lagrangian observations are being developed.
A major Concordiasi component is a field experiment during the austral springs of 2008–10. The field activities in 2010 are based on a constellation of up to 18 long-duration stratospheric super-pressure balloons (SPBs) deployed from the McMurdo station. Six of these balloons will carry GPS receivers and in situ instruments measuring temperature, pressure, ozone, and particles. Twelve of the balloons will release dropsondes on demand for measuring atmospheric parameters. Lastly, radiosounding measurements are collected at various sites, including the Concordia station.
Abstract
A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes or feedbacks due to soil and radiative heat transfer are accounted for by a “lumped parameter closure,” which represents the “coupling strength” of the system.
Observations from Cabauw, Netherlands, and Dome C, Antarctica, are analyzed. As expected, inversions are weak for strong winds, whereas large inversions are found under weak-wind conditions. However, a sharp transition is found between those regimes, as it occurs within a narrow wind range. This results in a typical S-shaped dependency. The conceptual model explains why this characteristic must be a robust feature. Differences between the Cabauw and Dome C cases are explained from differences in coupling strength (being weaker in the Antarctic). For comparison, a realistic column model is run. As findings are similar to the simple model and the observational analysis, it suggests generality of the results.
Theoretical analysis reveals that, in the transition zone near the critical wind speed, the response time of the system to perturbations becomes large. As resilience to perturbations becomes weaker, it may explain why, within this wind regime, an increase of scatter is found. Finally, the so-called heat flux duality paradox is analyzed. It is explained why numerical simulations with prescribed surface fluxes show a dynamical response different from more realistic surface-coupled systems.
Abstract
A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes or feedbacks due to soil and radiative heat transfer are accounted for by a “lumped parameter closure,” which represents the “coupling strength” of the system.
Observations from Cabauw, Netherlands, and Dome C, Antarctica, are analyzed. As expected, inversions are weak for strong winds, whereas large inversions are found under weak-wind conditions. However, a sharp transition is found between those regimes, as it occurs within a narrow wind range. This results in a typical S-shaped dependency. The conceptual model explains why this characteristic must be a robust feature. Differences between the Cabauw and Dome C cases are explained from differences in coupling strength (being weaker in the Antarctic). For comparison, a realistic column model is run. As findings are similar to the simple model and the observational analysis, it suggests generality of the results.
Theoretical analysis reveals that, in the transition zone near the critical wind speed, the response time of the system to perturbations becomes large. As resilience to perturbations becomes weaker, it may explain why, within this wind regime, an increase of scatter is found. Finally, the so-called heat flux duality paradox is analyzed. It is explained why numerical simulations with prescribed surface fluxes show a dynamical response different from more realistic surface-coupled systems.