Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Christopher Fogarty x
  • Refine by Access: All Content x
Clear All Modify Search
Christopher T. Fogarty
,
Richard J. Greatbatch
, and
Harold Ritchie

Abstract

When Hurricane Juan tracked toward Nova Scotia, Canada, in September 2003, forecasters were faced with the challenge of predicting the intensity and timing of the hurricane’s landfall. There were two competing factors dictating the storm’s intensity: 1) the decreasing sea surface temperatures (SSTs) over which the hurricane tracked that were conducive to weakening; and 2) the increased forward motion of the storm that enhanced the surface winds on the right (storm relative) side of the storm. Since Hurricane Juan was moving very quickly (forward speed approximately 15 m s−1) it spent less time over the cooler continental shelf waters between Nova Scotia and the >26°C water of the Gulf Stream than would have been the case for a slower-moving storm. However, those waters were warmer than normal during this event, by ∼4°C. It is argued that these warmer SSTs made a significant contribution (among other factors) to this rare category-2 hurricane at landfall in Nova Scotia. To assess the role of SSTs on the decay rate of Hurricane Juan, the Mesoscale Compressible Community model of the atmosphere is used. The model consists of a fixed, nested 3-km grid driven by a coarser 12-km grid, and is initiated using a synthetic hurricane vortex constructed from observational information such as storm size and intensity, thus giving a decent representation of the real storm. The model is initiated at 0000 UTC 28 September, when the hurricane was close to maximum intensity. An ensemble of experiments are conducted for each of two SST configurations: 1) analyzed SST of 28 September 2003 and 2) climatological SST representative of late September. Results from the 3-km simulations indicate that the intensity of Hurricane Juan’s maximum surface wind just prior to landfall was ∼5 m s−1 (±∼1.5 m s−1) weaker in the normal SST case, a result that is statistically significant at the 99% level. The destructiveness of the maximum landfall winds in the normal SST case is generally about 70% of that in the observed (warmer than normal) SST case. Model performance is measured using surface weather data, as well as data collected from a research aircraft that flew into the storm just prior to landfall.

Full access
James Abraham
,
J. Walter Strapp
,
Christopher Fogarty
, and
Mengistu Wolde

In order to better understand the behavior and impacts of tropical cyclones undergoing extratropical transition (ET), the Meteorological Service of Canada (MSC) conducted a test flight into Hurricane Michael. Between 16 and 19 October 2000 the transition of Hurricane Michael from a hurricane to an intense extratropical storm was investigated using a Canadian research aircraft instrumented for storm research. This paper presents the various data collected from the flight with a detailed description of the storm structure at the time when Michael was in the midst of ET.

Hurricane Michael was moving rapidly to the northeast, approximately 300 km southeast of Nova Scotia, Canada, during the time of the aircraft mission. A period of rapid intensification had also occurred during this time as the system moved north of the warm Gulf Stream waters and merged with a baroclinic low pressure system moving offshore of Nova Scotia. Consequently, the hurricane was sampled near the period of its lowest surface pressure and maximum surface winds. It is estimated that the aircraft passed approximately 10 km south of the estimated 42.7°N, 59.7°W position of the surface low pressure center at about 1645 UTC 19 October. Sixteen dropsondes were deployed in a single traverse from northwest to east of the storm center, and then back westbound south of the center. Winds were found to be highest on the southeast side of the hurricane where the storm movement adds to the hurricane rotational flow. A southwesterly jet with winds exceeding 70 m s−1 was observed between 500 and 2000 m approximately 85 km southeast of the center. This low-level jet was much deeper than the usual lowlevel maximum winds found in hurricanes. Michael was observed to have an elevated warm core similar to purely tropical systems, but low-altitude humidity appeared to be eroded by entrainment of dry midlatitude air surrounding the storm, which is typically observed during the ET process.

A cloud-profiling 35-GHz radar provided data on the distribution of precipitation across the system, and cloud microphysical probes measured cloud water contents, particle phases, and spectra. Although a wide variety of liquid, mixed phase, and deep glaciated clouds were observed, the glaciated cloud encountered on the northwest side of the center, associated with the most significant precipitation area, was relatively stratiform in nature, with a broad area of high ice water content reaching 1.5 g m−3, and very high concentrations of small ice particles.

Full access
Christopher T. Fogarty
,
Richard J. Greatbatch
, and
Harold Ritchie

Abstract

On 19 October 2000, Hurricane Michael merged with an approaching baroclinic trough over the western North Atlantic Ocean south of Nova Scotia. As the hurricane moved over cooler sea surface temperatures (SSTs; less than 25°C), it intensified to category-2 intensity on the Saffir–Simpson hurricane scale [maximum sustained wind speeds of 44 m s−1 (85 kt)] while tapping energy from the baroclinic environment. The large “hybrid” storm made landfall on the south coast of Newfoundland with maximum sustained winds of 39 m s−1 (75 kt) causing moderate damage to coastal communities east of landfall. Hurricane Michael presented significant challenges to weather forecasters. The fundamental issue was determining which of two cyclones (a newly formed baroclinic low south of Nova Scotia or the hurricane) would become the dominant circulation center during the early stages of the extratropical transition (ET) process. Second, it was difficult to predict the intensity of the storm at landfall owing to competing factors: 1) decreasing SSTs conducive to weakening and 2) the approaching negatively tilted upper-level trough, favoring intensification. Numerical hindcast simulations using the limited-area Mesoscale Compressible Community model with synthetic vortex insertion (cyclone bogus) prior to the ET of Hurricane Michael led to a more realistic evolution of wind and pressure compared to running the model without vortex insertion. Specifically, the mesoscale model correctly simulates the hurricane as the dominant circulation center early in the transition process, versus the baroclinic low to its north, which was the favored development in the runs not employing vortex insertion. A suite of experiments is conducted to establish the sensitivity of the ET to various initial conditions, lateral driving fields, domain sizes, and model parameters. The resulting storm tracks and intensities fall within the range of the operational guidance, lending support to the possibility of improving numerical forecasts using synthetic vortex insertion prior to ET in such a model.

Full access
Craig Earl-Spurr
,
Sébastien Langlade
,
Daniel Krahenbuhl
,
Sim D. Aberson
,
Manola Brunet
,
Johnny Chan
,
Chris Fogarty
,
Christopher W. Landsea
,
Blair Trewin
,
Christopher Velden
,
Robert C. Balling
, and
Randall S. Cerveny

Abstract

A World Meteorological Organization team has evaluated 2023's Tropical Cyclone Freddy's duration of 36.0 days (with 10-min average wind-speeds of 30 kt or higher) as the world record for longest tropical cyclone duration.

Open access
Clark Evans
,
Kimberly M. Wood
,
Sim D. Aberson
,
Heather M. Archambault
,
Shawn M. Milrad
,
Lance F. Bosart
,
Kristen L. Corbosiero
,
Christopher A. Davis
,
João R. Dias Pinto
,
James Doyle
,
Chris Fogarty
,
Thomas J. Galarneau Jr.
,
Christian M. Grams
,
Kyle S. Griffin
,
John Gyakum
,
Robert E. Hart
,
Naoko Kitabatake
,
Hilke S. Lentink
,
Ron McTaggart-Cowan
,
William Perrie
,
Julian F. D. Quinting
,
Carolyn A. Reynolds
,
Michael Riemer
,
Elizabeth A. Ritchie
,
Yujuan Sun
, and
Fuqing Zhang

Abstract

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication.

Open access
T. Boyer
,
J. Blunden
,
R. J. H. Dunn
,
Melanie Ades
,
Robert Adler
,
Susheel Adusumilli
,
W. Agyakwah
,
Somayeh Ahmadpour
,
Laura S. Aldeco
,
Michael A. Alexander
,
Mihai Alexe
,
Eric J. Alfaro
,
Richard P. Allan
,
Adam Allgood
,
Lincoln M. Alves
,
Jorge A. Amador
,
Dillon J. Amaya
,
Charles Amory
,
John Anderson
,
B. Andrade
,
Liss Marie Andreassen
,
Orlane Anneville
,
Yasuyuki Aono
,
Anthony Arguez
,
Dolores Armenteras Pascual
,
Carlo Arosio
,
Elizabeth Asher
,
John A. Augustine
,
Grinia Avalos
,
Cesar Azorin-Molina
,
Oscar M. Baez-Villanueva
,
Rebecca Baiman
,
Thomas J. Ballinger
,
Alison F. Banwell
,
M. Yu. Bardin
,
J. Barichivich
,
Sandra Barreira
,
Rebecca L. Beadling
,
Marc Beauchemin
,
Hylke E. Beck
,
Emily J. Becker
,
Brian Beckley
,
E. Bekele
,
Nicolas Bellouin
,
Angela Benedetti
,
Christine Berne
,
Logan T. Berner
,
Germar H. Bernhard
,
Uma S. Bhatt
,
Siiri Bigalke
,
Peter Bissolli
,
Jarle W. Bjerke
,
Eric S. Blake
,
Josh Blannin
,
Stephen Blenkinsop
,
Oliver Bochníček
,
Olivier Bock
,
Xavier Bodin
,
Olivier Bonte
,
Michael G. Bosilovich
,
Olivier Boucher
,
Jason E. Box
,
Deniz Bozkurt
,
Brian Brettschneider
,
Francis G. Bringas
,
Mike Brubaker
,
Stefan A. Buehler
,
Brandon Bukunt
,
David Burgess
,
Amy H. Butler
,
Michael P. Byrne
,
Blanca Calderón
,
Suzana J. Camargo
,
Jayaka Campbell
,
Diego Campos
,
Fabrizio Cappucci
,
Laura Carrea
,
Brendan R. Carter
,
Randall Cerveny
,
Ivona Cetinić
,
Don P. Chambers
,
Duo Chan
,
Elise Chandler
,
Kai-Lan Chang
,
Candice S. Charlton
,
Jack Chen
,
Lin Chen
,
Lijing Cheng
,
Vincent Y. S. Cheng
,
Lucy Chisholm
,
Hanne H. Christiansen
,
John R. Christy
,
Eui-Seok Chung
,
Laura M. Ciasto
,
Leonardo Clarke
,
Kyle R. Clem
,
Scott Clingan
,
Caio A.S. Coelho
,
Melanie Coldewey-Egbers
,
Steve Colwell
,
Owen R. Cooper
,
Richard C. Cornes
,
Kris Correa
,
Felipe Costa
,
Curt Covey
,
Lawrence Coy
,
Jean-Francois Crétaux
,
Theresa Crimmins
,
Molly Crotwell
,
Joshua Culpepper
,
Ana P. Cunha
,
Diego Cusicanqui
,
Rajashree T. Datta
,
Sean Davis
,
Richard A. M. de Jeu
,
Jos De Laat
,
Pranab Deb
,
Bertrand Decharme
,
Doug Degenstein
,
Reynald Delaloye
,
Chris Derksen
,
Howard J. Diamond
,
Elizabeth DiGangi
,
S. Dindyal
,
Dmitry Divine
,
Martin T. Dokulil
,
Markus G. Donat
,
Shenfu Dong
,
Wouter A. Dorigo
,
Caroline Drost Jensen
,
Matthew L. Druckenmiller
,
Marcel du Plessis
,
Diane Duchemin
,
Hilary Dugan
,
Dashkhuu Dulamsuren
,
Imke Durre
,
Geoff Dutton
,
Gregory Duveiller
,
Craig Earl-Spurr
,
Paola Echeverría Garcés
,
Mithat Ekici
,
Alesksandra Elias Chereque
,
Shane Elipot
,
M. ElKharrim
,
Howard E. Epstein
,
Jhan-Carlo Espinoza
,
Thomas W. Estilow
,
Nicole Estrella
,
Sinead Farrell
,
Nicolas Fauchereau
,
Robert S. Fausto
,
Richard A. Feely
,
Chris Fenimore
,
David Fereday
,
Denise Fernandez
,
Xavier Fettweis
,
Vitali E. Fioletov
,
Johannes Flemming
,
Caitlyn Florentine
,
Chris Fogarty
,
Ryan L. Fogt
,
Bruce C. Forbes
,
Michael J. Foster
,
Bryan A. Franz
,
Thomas Frederikse
,
Helen A. Fricker
,
Stacey M. Frith
,
Lucien Froidevaux
,
Gerald V. (JJ) Frost
,
Shanshan Fu
,
Yao Fu
,
Martin Füllekrug
,
Catherine Ganter
,
Meng Gao
,
Judith Garforth
,
Jay Garg
,
Sebastian Gerland
,
Artur Gevorgyan
,
Donata Giglio
,
Sarah T. Gille
,
John Gilson
,
Karin Gleason
,
Nadine Gobron
,
Sophie Godin-Beekmann
,
Marlos Goes
,
Stanley B. Goldenberg
,
Julio Gómez Camacho
,
Yolanda González Hernández
,
Steven Goodman
,
Atsushi Goto
,
Garrett Graham
,
Alice Grimm
,
Jens-Uwe Grooß
,
Alexander Gruber
,
Guojun Gu
,
Mauro Guglielmin
,
Sebastian Hahn
,
Leopold Haimberger
,
S. Hakmi
,
Brad D. Hall
,
Benjamin D. Hamlington
,
Edward Hanna
,
Inger Hanssen-Bauer
,
Merritt E. Harlan
,
Daniel S. Harnos
,
I. Harris
,
Qiong He
,
Máret J. Heatta
,
Richard R. Jr. Heim
,
Deborah L. Hemming
,
Stefan Hendricks
,
J. Hicks
,
Hugo G. Hidalgo
,
Martin Hirschi
,
Shu-peng (Ben) Ho
,
Will Hobbs
,
Robert Holzworth
,
Radley M. Horton
,
Filip Hrbáček
,
Guojie Hu
,
Zeng-Zhen Hu
,
Boyin Huang
,
Hongjie Huang
,
Dale Hurst
,
Iolanda Ialongo
,
Antje Inness
,
Ketil Isaksen
,
Masayoshi Ishii
,
Michael G. Jacox
,
Gerardo Jadra
,
Piyush Jain
,
Annika Jersild
,
Jelmer Jeuring
,
Svetlana Jevrejeva
,
Gensuo Jia
,
Viju O. John
,
William E. Johns
,
Bjørn Johnsen
,
Bryan Johnson
,
Gregory C. Johnson
,
P. D. Jones
,
Simon A. Josey
,
G. Jumaux
,
Robert Junod
,
Andreas Kääb
,
K. Kabidi
,
Johannes W. Kaiser
,
Lars Kaleschke
,
Viktor Kaufmann
,
Amin Fazl Kazemi
,
Linda M. Keller
,
Andreas Kellerer-Pirklbauer
,
Michael Kendon
,
John Kennedy
,
Yelena Khalatyan
,
Valentina Khan
,
Sergey Khaykin
,
Mai Van Khiem
,
Richard Kidd
,
Rachel E. Killick
,
Seong-Joong Kim
,
Tyler V. King
,
Zak Kipling
,
Megan Kirchmeier-Young
,
Philip J. Klotzbach
,
John A. Knaff
,
Jack Kohler
,
Akash Koppa
,
Natalia N. Korshunova
,
Benjamin M. Kraemer
,
Natalya A. Kramarova
,
Jessica Kromer
,
A. C. Kruger
,
Arun Kumar
,
Mikael Kuusela
,
R. Sofia La Fuente
,
Alo Laas
,
Zachary Labe
,
Rick Lader
,
Leslie Lait
,
Mónika Lakatos
,
Kaisa Lakkala
,
Hoang Phuc Lam
,
Xin Lan
,
Peter Landschützer
,
Chris W. Landsea
,
Kathleen O. Lantz
,
Jeff Lapierre
,
Mark J. Lara
,
Waldo Lavado-Casimiro
,
David A. Lavers
,
Matthew A. Lazzara
,
Thierry Leblanc
,
Simon H. Lee
,
Tsz-Cheung Lee
,
Eric Leibensperger
,
Chris Lennard
,
Eric Leuliette
,
Michelle L’Heureux
,
Jan L. Lieser
,
Ben Liley
,
I-I Lin
,
Chao Liu
,
Yakun Liu
,
Y. T. Eunice Lo
,
Ricardo Locarnini
,
Norman G. Loeb
,
Bryant D. Loomis
,
Hosmay Lopez
,
Andrew M. Lorrey
,
Diego Loyola
,
Susan M. Lozier
,
Rui Lu
,
Bartłomiej Luks
,
Rick Lumpkin
,
Jing-Jia Luo
,
Kari Luojus
,
John M. Lyman
,
Matthew J. Macander
,
Michael MacFerrin
,
Graeme M. MacGilchrist
,
Michelle L. MacLennan
,
Andrew D. Magee
,
Florence Magnin
,
Rúna Í. Magnússon
,
Jostein Mamen
,
Ken D. Mankoff
,
Gloria Manney
,
Jose A. Marengo
,
Mohammadi Marjan
,
Andreas Marouchos
,
Rodney Martinez
,
Robert A. Massom
,
Shin-Ichiro Matsuzaki
,
Tom Matthews
,
Michael Mayer
,
C. McBride
,
Michael McCarthy
,
Clive R. McMahon
,
Tim R. McVicar
,
Carl A. Mears
,
Brooke Medley
,
Walter N. Meier
,
Ademe Mekonnen
,
Annette Menzel
,
Christopher J. Merchant
,
Leo-Juhani Merio
,
Mark A. Merrifield
,
Michael F. Meyer
,
Tristan Meyers
,
David E. Mikolajczyk
,
John B. Miller
,
Caitlin Minney
,
Diego G. Miralles
,
Alexey Mishonov
,
Gary T. Mitchum
,
Ben I. Moat
,
Aurel Moise
,
Jorge Molina-Carpio
,
Paul M. Montesano
,
Stephan A. Montzka
,
Ronald Moody
,
Twila A. Moon
,
Natali Mora
,
Colin Morice
,
Isamu Morino
,
A. E. Mostafa
,
Thomas L. Mote
,
Ivan Mrekaj
,
Lawrence Mudryk
,
Robi Muharsyah
,
Jens Mühle
,
Rolf Müller
,
D. Nance
,
Christopher S. R. Neigh
,
R. Steven Nerem
,
Paul A. Newman
,
Julien P. Nicolas
,
Jeannette Noetzli
,
Ben Noll
,
Taylor Norton
,
Kelsey E. Nyland
,
John O’Keefe
,
Mitsuho Oe
,
Yuka Okunaka
,
Alexander Orlik
,
Tim J. Osborn
,
James E. Overland
,
Finnur Pálsson
,
Mark Parrington
,
Richard J. Pasch
,
Reynaldo Pascual Ramírez
,
Linda Paterson
,
Cécile Pellet
,
Mauri S. Pelto
,
Renellys C. Perez
,
Donald K. Perovich
,
Kyle Petersen
,
Irina Petropavlovskikh
,
Alek Petty
,
Alexandre B. Pezza
,
Luciano P. Pezzi
,
Coda Phillips
,
Gareth K. Phoenix
,
Don Pierson
,
Izidine Pinto
,
Ivenis Pita
,
Michael Pitts
,
Stephen Po-Chedley
,
Paolo Pogliotti
,
Kristin Poinar
,
Lorenzo Polvani
,
Amos Porat
,
Wolfgang Preimesberger
,
Colin Price
,
Sarah G. Purkey
,
Willy R. Quispe
,
Andrea M. Ramos
,
William J. Randel
,
Marilyn N. Raphael
,
Colin Raymond
,
James Reagan
,
Phillip Reid
,
Samuel Rémy
,
Hans Ressl
,
Lucrezia Ricciardulli
,
Andrew D. Richardson
,
Robert Ricker
,
Patricia P. Rivera
,
David A. Robinson
,
M. Robjhon
,
Matthew Rodell
,
Esteban Rodriguez Guisado
,
Nemesio Rodriguez-Fernandez
,
Maarit Roebeling
,
Cassandra Rogers
,
P. Rohini
,
Vladimir E. Romanovsky
,
Josyane Ronchail
,
Matthew Rosencrans
,
Karen Rosenlof
,
Benjamin Rösner
,
Alexei Rozanov
,
Jozef Rozkošný
,
Olga O. Rusanovskaya
,
This Rutishauser
,
C. T. Sabeerali
,
Ryan Said
,
Tetsu Sakai
,
Roberto Salinas
,
Ahira Sánchez-Lugo
,
Michelle L. Santee
,
Louis Sass
,
Kanako Sato
,
Parnchai Sawaengphokhai
,
A. Sayouri
,
Theodore A. Scambos
,
Johan H. Scheller
,
Verena Schenzinger
,
Robert W. Schlegel
,
Claudia Schmid
,
Martin Schmid
,
Carl J. Schreck
,
Cristina Schulz
,
Z. T. Segele
,
Sonia I. Seneviratne
,
Serhat Sensoy
,
Ji-In Seong
,
Julieta Serna Cuenca
,
Mark C. Serreze
,
Fumi Sezaki
,
Xi Shao
,
Sapna Sharma
,
Jia-Rui Shi
,
Lei Shi
,
Nikolay I. Shiklomanov
,
Svetlana V. Shimaraeva
,
Ryuichiro Shinohara
,
R. Shukla
,
Eugene A. Silow
,
Adrian J. Simmons
,
David A. Smeed
,
Adam Smith
,
Benjamin E. Smith
,
Ryan H. Smith
,
Sharon L. Smith
,
Brian J. Soden
,
Viktoria Sofieva
,
Logan Soldo
,
Everaldo Souza
,
Jacqueline Spence-Hemmings
,
Sandra Spillane
,
O. P. Sreejith
,
A. K. Srivastava
,
Jr.Paul W. Stackhouse
,
Sharon Stammerjohn
,
Ryan Stauffer
,
Wolfgang Steinbrecht
,
Andrea K. Steiner
,
Jose L. Stella
,
Tannecia S. Stephenson
,
Laura Stevens
,
Paul Stoy
,
Pietro Stradiotti
,
Dmitry A. Streletskiy
,
Thea Sukianto
,
Tove Svendby
,
William Sweet
,
Ghassan Taha
,
Kiyotoshi Takahashi
,
Kazuto Takemura
,
Michael A. Taylor
,
Marco Tedesco
,
Stephen J. Thackeray
,
W. M. Thiaw
,
Emmanuel Thibert
,
Sandy Thomalla
,
Richard L. Thoman
,
Philip R. Thompson
,
Laura Thomson
,
Thorsteinn Thorsteinsson
,
Xiangshan Tian-Kunze
,
Mary-Louise Timmermans
,
Maxim A. Timofeyev
,
Hans Tømmervik
,
Kleareti Tourpali
,
Katja Trachte
,
Blair C. Trewin
,
Joaquin A. Triñanes
,
Sarat Chandra Tripathy
,
Emma Tronquo
,
Adrian Trotman
,
Ryan E. Truchelut
,
Luke D. Trusel
,
Katherine Turner
,
Mari R. Tye
,
John Uehling
,
Ronald van der A
,
Roderick van der Linden
,
Robin van der Schalie
,
Gerard van der Schrier
,
Cédric J. Van Meerbeeck
,
Arnold J. H. van Vliet
,
Ahad Vazife
,
Piet Verburg
,
Jean-Paul Vernier
,
Isaac J. Vimont
,
R. Virasami
,
Katrina Virts
,
Sebastián Vivero
,
Denis L. Volkov
,
Holger Vömel
,
Russell S. Vose
,
Christine F. Waigl
,
Donald (Skip) A. Walker
,
John E. Walsh
,
Bin Wang
,
Hui Wang
,
Muyin Wang
,
Ray H. J. Wang
,
Rik Wanninkhof
,
Taran Warnock
,
Mark Weber
,
Melinda Webster
,
Adrian Wehrlé
,
Robert A. Weller
,
Toby K. Westberry
,
Matthew J. Widlansky
,
David N. Wiese
,
Jeannette D. Wild
,
Kate M. Willett
,
Earle Williams
,
Josh K. Willis
,
Gabriel J. Wolken
,
Takmeng Wong
,
Kimberly M. Wood
,
Richard Iestyn Woolway
,
Bert Wouters
,
Francis Wu
,
Dedi Yang
,
Xungang Yin
,
Ziqi Yin
,
Lisan Yu
,
Zhenzhong Zeng
,
Huai-min Zhang
,
Peiqun Zhang
,
Lin Zhao
,
Feng Zhong
,
Zhiwei Zhu
,
Jerry R. Ziemke
,
Markus Ziese
,
Ruxandra M. Zotta
, and
Cheng-Zhi Zou

Abstract

—J. Blunden and T. Boyer

In 2023, La Niña conditions that generally prevailed in the eastern Pacific Ocean from mid-2020 into early 2023 gave way to a strong El Niño by October. Atmospheric concentrations of Earth’s major greenhouse gases—carbon dioxide, methane, and nitrous oxide—all increased to record-high levels. The annual global average carbon dioxide concentration in the atmosphere rose to 419.3±0.1 ppm, which is 50% greater than the pre-industrial level. The growth from 2022 to 2023 was 2.8 ppm, the fourth highest in the record since the 1960s.

The combined short-term effects of El Niño and the long-term effects of increasing levels of heat-trapping gases in the atmosphere contributed to new records for many essential climate variables reported here. The annual global temperature across land and oceans was the highest in records dating as far back as 1850, with the last seven months (June–December) having each been record warm. Over land, the globally averaged temperature was also record high. Dozens of countries reported record or near-record warmth for the year, including China and continental Europe as a whole (warmest on record), India and Russia (second warmest), and Canada (third warmest). Intense and widespread heatwaves were reported around the world. In Vietnam, an all-time national maximum temperature record of 44.2°C was observed at Tuong Duong on 7 May, surpassing the previous record of 43.4°C at Huong Khe on 20 April 2019. In Brazil, the air temperature reached 44.8°C in Araçuaí in Minas Gerais on 20 November, potentially a new national record and 12.8°C above normal.

The effect of rising temperatures was apparent in the cryosphere, where snow cover extent by June 2023 was the smallest in the 56-year record for North America and seventh smallest for the Northern Hemisphere overall. Heatwaves contributed to the greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Due to rapid volume loss beginning in 2021, St. Anna Glacier in Switzerland and Ice Worm Glacier in the United States disappeared completely. In August, as a direct result of glacial thinning over the past 20 years, a glacial lake on a tributary of the Mendenhall Glacier in Alaska burst through its ice dam and caused unprecedented flooding on Mendenhall River near Juneau.

Across the Arctic, the annual surface air temperature was the fourth highest in the 124-year record, and summer (July–September) was record warm. Smaller-than-normal snow cover extent in May and June contributed to the third-highest average peak tundra greenness in the 24-year record. In September, Arctic minimum sea ice extent was the fifth smallest in the 45-year satellite record. The 17 lowest September extents have all occurred in the last 17 years.

In Antarctica, temperatures for much of the year were up to 6°C above average over the Weddell Sea and along coastal Dronning Maud Land. The Antarctic Peninsula also experienced well-above-average temperatures during the 2022/23 melt season, which contributed to its fourth consecutive summer of above-average surface melt. On 21 February, Antarctic sea ice extent and sea ice area both reached all-time lows, surpassing records set just a year earlier. Over the course of the year, new daily record-low sea ice extents were set on 278 days. In some instances, these daily records were set by a large margin, for example, the extent on 6 July was 1.8 million km2 lower than the previous record low for that day.

Across the global oceans, the annual sea surface temperature was the highest in the 170-year record, far surpassing the previous record of 2016 by 0.13°C. Daily and monthly records were set from March onward, including an historic-high daily global mean sea surface temperature of 18.99°C recorded on 22 August. Approximately 94% of the ocean surface experienced at least one marine heatwave in 2023, while 27% experienced at least one cold spell. Globally averaged ocean heat content from the surface to 2000-m depth was record high in 2023, increasing at a rate equivalent to ∼0.7 Watts per square meter of energy applied over Earth’s surface. Global mean sea level was also record high for the 12th consecutive year, reaching 101.4 mm above the 1993 average when satellite measurements began, an increase of 8.1±1.5 mm over 2022 and the third highest year-over-year increase in the record.

A total of 82 named tropical storms were observed during the Northern and Southern Hemispheres’ storm seasons, below the 1991–2020 average of 87. Hurricane Otis became the strongest landfalling hurricane on record for the west coast of Mexico at 140 kt (72 m s−1), causing at least 52 fatalities and $12–16 billion U.S. dollars in damage. Freddy became the world’s longest-lived tropical cyclones on record, developing into a tropical cyclone on 6 February and finally dissipating on 12 March. Freddy crossed the full width of the Indian Ocean and made one landfall in Madagascar and two in Mozambique. In the Mediterranean Sea—outside of traditional tropical cyclone basins—heavy rains and flooding from Storm Daniel killed more than 4300 people and left more than 8000 missing in Libya.

The record-warm temperatures in 2023 created conditions that helped intensify the hydrological cycle. Measurements of total-column water vapor in the atmosphere were the highest on record, while the fraction of cloud area in the sky was the lowest since records began in 1980. The annual global mean precipitation total over land surfaces for 2023 was among the lowest since 1979, but global one-day maximum totals were close to average, indicating an increase in rainfall intensity.

In July, record-high areas of land across the globe (7.9%) experienced extreme drought, breaking the previous record of 6.2% in July 2022. Overall, 29.7% of land experienced moderate or worse categories of drought during the year, also a record. Mexico reported its driest (and hottest) year since the start of its record in 1950. In alignment with hot and prolonged dry conditions, Canada experienced its worst national wildfire season on record. Approximately 15 million hectares burned across the country, which was more than double the previous record from 1989. Smoke from the fires were transported far into the United States and even to western European countries. August to October 2023 was the driest three-month period in Australia in the 104-year record. Millions of hectares of bushfires burned for weeks in the Northern Territory. In South America, extreme drought developed in the latter half of the year through the Amazon basin. By the end of October, the Rio Negro at Manaus, a major tributary of the Amazon River, fell to its lowest water level since records began in 1902.

The transition from La Niña to El Niño helped bring relief to the prolonged drought conditions in equatorial eastern Africa. However, El Niño along with positive Indian Ocean dipole conditions also contributed to excessive rainfall that resulted in devastating floods over southeastern Ethiopia, Somalia, and Kenya during October to December that displaced around 1.5 million people. On 5 September, the town of Zagora, Greece, broke a national record for highest daily rainfall (754 mm in 21 hours, after which the station ceased reporting) due to Storm Daniel; this one-day accumulation was close to Zagora’s normal annual total.

Open access
Tim Boyer
,
Ellen Bartow-Gillies
,
A. Abida
,
Melanie Ades
,
Robert Adler
,
Susheel Adusumilli
,
W. Agyakwah
,
Brandon Ahmasuk
,
Laura S. Aldeco
,
Mihai Alexe
,
Eric J. Alfaro
,
Richard P. Allan
,
Adam Allgood
,
Lincoln. M. Alves
,
Jorge A. Amador
,
John Anderson
,
B. Andrade
,
Orlane Anneville
,
Yasuyuki Aono
,
Anthony Arguez
,
Carlo Arosio
,
C. Atkinson
,
John A. Augustine
,
Grinia Avalos
,
Cesar Azorin-Molina
,
Stacia A. Backensto
,
Stephan Bader
,
Julian Baez
,
Rebecca Baiman
,
Thomas J. Ballinger
,
Alison F. Banwell
,
M. Yu Bardin
,
Jonathan Barichivich
,
John E. Barnes
,
Sandra Barreira
,
Rebecca L. Beadling
,
Hylke E. Beck
,
Emily J. Becker
,
E. Bekele
,
Guillem Martín Bellido
,
Nicolas Bellouin
,
Angela Benedetti
,
Rasmus Benestad
,
Christine Berne
,
Logan. T. Berner
,
Germar H. Bernhard
,
Uma S. Bhatt
,
A. E. Bhuiyan
,
Siiri Bigalke
,
Tiago Biló
,
Peter Bissolli
,
W. Bjerke Jarle
,
Kevin Blagrave
,
Eric S. Blake
,
Stephen Blenkinsop
,
Jessica Blunden
,
Oliver Bochníček
,
Olivier Bock
,
Xavier Bodin
,
Michael Bosilovich
,
Olivier Boucher
,
Deniz Bozkurt
,
Brian Brettschneider
,
Francis G. Bringas
,
Francis Bringas
,
Dennis Buechler
,
Stefan A. Buehler
,
Brandon Bukunt
,
Blanca Calderón
,
Suzana J. Camargo
,
Jayaka Campbell
,
Diego Campos
,
Laura Carrea
,
Brendan R. Carter
,
Ivona Cetinić
,
Don P. Chambers
,
Duo Chan
,
Elise Chandler
,
Kai-Lan Chang
,
Hua Chen
,
Lin Chen
,
Lijing Cheng
,
Vincent Y. S. Cheng
,
Leah Chomiak
,
Hanne H. Christiansen
,
John R. Christy
,
Eui-Seok Chung
,
Laura M. Ciasto
,
Leonardo Clarke
,
Kyle R. Clem
,
Scott Clingan
,
Caio A.S. Coelho
,
Judah L. Cohen
,
Melanie Coldewey-Egbers
,
Steve Colwell
,
Owen R. Cooper
,
Richard C. Cornes
,
Kris Correa
,
Felipe Costa
,
Curt Covey
,
Lawrence Coy
,
Jean-François Créatux
,
Lenka Crhova
,
Theresa Crimmins
,
Meghan F. Cronin
,
Thomas Cropper
,
Molly Crotwell
,
Joshua Culpepper
,
Ana P. Cunha
,
Diego Cusicanqui
,
Rajashree T. Datta
,
Sean M. Davis
,
Veerle De Bock
,
Richard A. M. de Jeu
,
Jos De Laat
,
Bertrand Decharme
,
Doug Degenstein
,
Reynald Delaloye
,
Mesut Demircan
,
Chris Derksen
,
Ricardo Deus
,
K. R. Dhurmea
,
Howard J. Diamond
,
S. Dirkse
,
Dmitry Divine
,
Martin T. Dokulil
,
Markus G. Donat
,
Shenfu Dong
,
Wouter A. Dorigo
,
Caroline Drost Jensen
,
Matthew L. Druckenmiller
,
Paula Drumond
,
Marcel du Plessis
,
Hilary A. Dugan
,
Dashkhuu Dulamsuren
,
Devon Dunmire
,
Robert J. H. Dunn
,
Imke Durre
,
Geoff Dutton
,
Gregory Duveiller
,
Mithat Ekici
,
Alesksandra Elias Chereque
,
M. ElKharrim
,
Howard E. Epstein
,
Jhan-Carlo Espinoza
,
Thomas W. Estilow
,
Nicole Estrella
,
Nicolas Fauchereau
,
Robert S. Fausto
,
Richard A. Feely
,
Chris Fenimore
,
David Fereday
,
Xavier Fettweis
,
vitali E. Fioletov
,
Johannes Flemming
,
Chris Fogarty
,
Ryan L. Fogt
,
Bruce C. Forbes
,
Michael J. Foster
,
Bryan A. Franz
,
Natalie M. Freeman
,
Helen A. Fricker
,
Stacey M. Frith
,
Lucien Froidevaux
,
(JJ)
,
Steven Fuhrman
,
Martin Füllekrug
,
Catherine Ganter
,
Meng Gao
,
Alex S. Gardner
,
Judith Garforth
,
Jay Garg
,
Sebastian Gerland
,
Badin Gibbes
,
Sarah T. Gille
,
John Gilson
,
Karin Gleason
,
Nadine Gobron
,
Scott J. Goetz
,
Stanley B. Goldenberg
,
Gustavo Goni
,
Steven Goodman
,
Atsushi Goto
,
Jens-Uwe Grooß
,
Alexander Gruber
,
Guojun Gu
,
Charles “Chip” P. Guard
,
S. Hagos
,
Sebastian Hahn
,
Leopold Haimberger
,
Bradley D. Hall
,
Benjamin D. Hamlington
,
Edward Hanna
,
Inger Hanssen-Bauer
,
Daniel S. Harnos
,
Ian Harris
,
Qiong He
,
Richard R. Heim Jr.
,
Sverker Hellström
,
Deborah L. Hemming
,
Stefan Hendricks
,
J. Hicks
,
Hugo G. Hidalgo
,
Martin Hirschi
,
(Ben)
,
W. Hobbs
,
Robert M. Holmes
,
Robert Holzworth
,
Filip Hrbáček
,
Guojie Hu
,
Zeng-Zhen Hu
,
Boyin Huang
,
Hongjie Huang
,
Dale F. Hurst
,
Iolanda Ialongo
,
Antje Inness
,
Ketil Isaksen
,
Masayoshi Ishii
,
Gerardo Jadra
,
Svetlana Jevrejeva
,
Viju O. John
,
W. Johns
,
Bjørn Johnsen
,
Bryan Johnson
,
Gregory C. Johnson
,
Philip D. Jones
,
Timothy Jones
,
Simon A. Josey
,
G. Jumaux
,
Robert Junod
,
Andreas Kääb
,
K. Kabidi
,
Johannes W. Kaiser
,
Robb S.A. Kaler
,
Lars Kaleschke
,
Viktor Kaufmann
,
Amin Fazl Kazemi
,
Linda M. Keller
,
Andreas Kellerer-Pirklbauer
,
Mike Kendon
,
John Kennedy
,
Elizabeth C. Kent
,
Kenneth Kerr
,
Valentina Khan
,
Mai Van Khiem
,
Richard Kidd
,
Mi Ju Kim
,
Seong-Joong Kim
,
Zak Kipling
,
Philip J. Klotzbach
,
John A. Knaff
,
Akash Koppa
,
Natalia N. Korshunova
,
Benjamin M. Kraemer
,
Natalya A. Kramarova
,
A. C. Kruger
,
Andries Kruger
,
Arun Kumar
,
Michelle L’Heureux
,
Sofia La Fuente
,
Alo Laas
,
Zachary M. Labe
,
Rick Lader
,
Mónika Lakatos
,
Kaisa Lakkala
,
Hoang Phuc Lam
,
Xin Lan
,
Peter Landschützer
,
Chris W. Landsea
,
Timothy Lang
,
Matthias Lankhorst
,
Kathleen O. Lantz
,
Mark J. Lara
,
Waldo Lavado-Casimiro
,
David A. Lavers
,
Matthew A. Lazzara
,
Thierry Leblanc
,
Tsz-Cheung Lee
,
Eric M. Leibensperger
,
Chris Lennard
,
Eric Leuliette
,
Kinson H. Y. Leung
,
Jan L. Lieser
,
Tanja Likso
,
I-I. Lin
,
Jackie Lindsey
,
Yakun Liu
,
Ricardo Locarnini
,
Norman G. Loeb
,
Bryant D. Loomis
,
Andrew M. Lorrey
,
Diego Loyola
,
Rui Lu
,
Rick Lumpkin
,
Jing-Jia Luo
,
Kari Luojus
,
John M. Lyman
,
Stephen C. Maberly
,
Matthew J. Macander
,
Michael MacFerrin
,
Graeme A. MacGilchrist
,
Michelle L. MacLennan
,
Remi Madelon
,
Andrew D. Magee
,
Florence Magnin
,
Jostein Mamen
,
Ken D. Mankoff
,
Gloria L. Manney
,
Izolda Marcinonienė
,
Jose A. Marengo
,
Mohammadi Marjan
,
Ana E. Martínez
,
Robert A. Massom
,
Shin-Ichiro Matsuzaki
,
Linda May
,
Michael Mayer
,
Matthew R. Mazloff
,
Stephanie A. McAfee
,
C. McBride
,
Matthew F. McCabe
,
James W. McClelland
,
Michael J. McPhaden
,
Tim R. Mcvicar
,
Carl A. Mears
,
Walter N. Meier
,
A. Mekonnen
,
Annette Menzel
,
Christopher J. Merchant
,
Mark A. Merrifield
,
Michael F. Meyer
,
Tristan Meyers
,
David E. Mikolajczyk
,
John B. Miller
,
Diego G. Miralles
,
Noelia Misevicius
,
Alexey Mishonov
,
Gary T. Mitchum
,
Ben I. Moat
,
Leander Moesinger
,
Aurel Moise
,
Jorge Molina-Carpio
,
Ghislaine Monet
,
Stephan A. Montzka
,
Twila A. Moon
,
G. W. K. Moore
,
Natali Mora
,
Johnny Morán
,
Claire Morehen
,
Colin Morice
,
A. E. Mostafa
,
Thomas L. Mote
,
Ivan Mrekaj
,
Lawrence Mudryk
,
Jens Mühle
,
Rolf Müller
,
David Nance
,
Eric R. Nash
,
R. Steven Nerem
,
Paul A. Newman
,
Julien P. Nicolas
,
Juan J. Nieto
,
Jeannette Noetzli
,
Ben Noll
,
Taylor Norton
,
Kelsey E. Nyland
,
John O’Keefe
,
Naomi Ochwat
,
Yoshinori Oikawa
,
Yuka Okunaka
,
Timothy J. Osborn
,
James E. Overland
,
Taejin Park
,
Mark Parrington
,
Julia K. Parrish
,
Richard J. Pasch
,
Reynaldo Pascual Ramírez
,
Cécile Pellet
,
Mauri S. Pelto
,
Melita Perčec Tadić
,
Donald K. Perovich
,
Guðrún Nína Petersen
,
Kyle Petersen
,
Irina Petropavlovskikh
,
Alek Petty
,
Alexandre B. Pezza
,
Luciano P. Pezzi
,
Coda Phillips
,
Gareth K. Phoenix
,
Don Pierson
,
Izidine Pinto
,
Vanda Pires
,
Michael Pitts
,
Stephen Po-Chedley
,
Paolo Pogliotti
,
Kristin Poinar
,
Lorenzo Polvani
,
Wolfgang Preimesberger
,
Colin Price
,
Merja Pulkkanen
,
Sarah G. Purkey
,
Bo Qiu
,
Kenny Quisbert
,
Willy R. Quispe
,
M. Rajeevan
,
Andrea M. Ramos
,
William J. Randel
,
Mika Rantanen
,
Marilyn N. Raphael
,
James Reagan
,
Cristina Recalde
,
Phillip Reid
,
Samuel Rémy
,
Alejandra J. Reyes Kohler
,
Lucrezia Ricciardulli
,
Andrew D. Richardson
,
Robert Ricker
,
David A. Robinson
,
M. Robjhon
,
Willy Rocha
,
Matthew Rodell
,
Esteban Rodriguez Guisado
,
Nemesio Rodriguez-Fernandez
,
Vladimir E. Romanovsky
,
Josyane Ronchail
,
Matthew Rosencrans
,
Karen H. Rosenlof
,
Benjamin Rösner
,
Henrieke Rösner
,
Alexei Rozanov
,
Jozef Rozkošný
,
Frans Rubek
,
Olga O. Rusanovskaya
,
This Rutishauser
,
C. T. Sabeerali
,
Roberto Salinas
,
Ahira Sánchez-Lugo
,
Michelle L. Santee
,
Marcelo Santini
,
Katsunari Sato
,
Parnchai Sawaengphokhai
,
A. Sayouri
,
Theodore Scambos
,
Verena Schenzinger
,
Semjon Schimanke
,
Robert W. Schlegel
,
Claudia Schmid
,
Martin Schmid
,
Udo Schneider
,
Carl J. Schreck
,
Cristina Schultz
,
Science Systems and Applications Inc.
,
Z. T. Segele
,
Serhat Sensoy
,
Shawn P. Serbin
,
Mark C. Serreze
,
Amsari Mudzakir Setiawan
,
Fumi Sezaki
,
Sapna Sharma
,
Jonathan D. Sharp
,
Gay Sheffield
,
Jia-Rui Shi
,
Lei Shi
,
Alexander I. Shiklomanov
,
Nikolay I. Shiklomanov
,
Svetlana V. Shimaraeva
,
R. Shukla
,
David A. Siegel
,
Eugene A. Silow
,
F. Sima
,
Adrian J. Simmons
,
David A. Smeed
,
Adam Smith
,
Sharon L. Smith
,
Brian J. Soden
,
Viktoria Sofieva
,
Everaldo Souza
,
Tim H. Sparks
,
Jacqueline Spence-Hemmings
,
Robert G. M. Spencer
,
Sandra Spillane
,
O. P. Sreejith
,
A. K. Srivastava
,
Paul W. Stackhouse Jr.
,
Sharon Stammerjohn
,
Ryan Stauffer
,
Wolfgang Steinbrecht
,
Andrea K. Steiner
,
Jose L. Stella
,
Tannecia S. Stephenson
,
Pietro Stradiotti
,
Susan E. Strahan
,
Dmitry A. Streletskiy
,
Divya E. Surendran
,
Anya Suslova
,
Tove Svendby
,
William Sweet
,
Kiyotoshi Takahashi
,
Kazuto Takemura
,
Suzanne E. Tank
,
Michael A. Taylor
,
Marco Tedesco
,
Stephen J. Thackeray
,
W. M. Thiaw
,
Emmanuel Thibert
,
Richard L. Thoman
,
Andrew F. Thompson
,
Philip R. Thompson
,
Xiangshan Tian-Kunze
,
Mary-Louise Timmermans
,
Maxim A. Timofeyev
,
Skie Tobin
,
Hans Tømmervik
,
Kleareti Tourpali
,
Lidia Trescilo
,
Mikhail Tretiakov
,
Blair C. Trewin
,
Joaquin A. Triñanes
,
Adrian Trotman
,
Ryan E. Truchelut
,
Luke D. Trusel
,
Mari R. Tye
,
Ronald van der A
,
Robin van der Schalie
,
Gerard van der Schrier
,
Cedric J. Van Meerbeeck
,
Arnold J.H. van vliet
,
Ahad Vazife
,
Piet Verburg
,
Jean-Paul Vernier
,
Isaac J. Vimont
,
Katrina Virts
,
Sebastián Vivero
,
Denis L. Volkov
,
Holger Vömel
,
Russell S. Vose
,
(Skip)
,
John E. Walsh
,
Bin Wang
,
Hui Wang
,
Muyin Wang
,
Ray H. J. Wang
,
Xinyue Wang
,
Rik Wanninkhof
,
Taran Warnock
,
Mark Weber
,
Melinda Webster
,
Adrian Wehrlé
,
Caihong Wen
,
Toby K. Westberry
,
Matthew J. Widlansky
,
David N. Wiese
,
Jeannette D. Wild
,
Jonathan D. Wille
,
An Willems
,
Kate M. Willett
,
Earle Williams
,
J. Willis
,
Takmeng Wong
,
Kimberly M. Wood
,
Richard Iestyn Woolway
,
Ping-Ping Xie
,
Dedi Yang
,
Xungang Yin
,
Ziqi Yin
,
Zhenzhong Zeng
,
Huai-min Zhang
,
Li Zhang
,
Peiqun Zhang
,
Lin Zhao
,
Xinjia Zhou
,
Zhiwei Zhu
,
Jerry R. Ziemke
,
Markus Ziese
,
Scott Zolkos
,
Ruxandra M. Zotta
,
Cheng-Zhi Zou
,
Jessicca Allen
,
Amy V. Camper
,
Bridgette O. Haley
,
Gregory Hammer
,
S. Elizabeth Love-Brotak
,
Laura Ohlmann
,
Lukas Noguchi
,
Deborah B. Riddle
, and
Sara W. Veasey

Abstract

—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES

Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.

In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.

Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.

While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.

The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.

In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.

In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.

Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.

A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.

As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.

In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.

On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.

Open access