Search Results
You are looking at 1 - 10 of 11 items for
- Author or Editor: Christopher G. Kruse x
- Refine by Access: All Content x
Abstract
Mountain ranges are regional features on Earth, as are the regions of mountain-wave drag (MWD) exerted by dissipating atmospheric gravity waves generated by flow over them. However, these regional drags have significant global- or zonal-mean impacts on Earth’s atmospheric general circulation (e.g., slowing of the polar night jet). The objective of this work is to understand the regional to global evolution of these impacts. The approach is to track the evolution of MWD-generated potential vorticity (PV) over the winter using the Whole Atmosphere Community Climate Model (WACCM). Within an ensemble of winter-long runs with and without MWD, lower-stratospheric PV is generated over mountains and advected downstream, generating large-scale PV banners. These PV banners are diffused but survive this diffusion and are reinforced over downstream mountain ranges, accumulating into zonal-mean or global features within WACCM. A simple 2D model representing sources, advection, and diffusion of “passive PV” recreates the salient features in the WACCM results, suggesting the winter-long evolution of MWD-generated PV can be crudely understood in terms of horizontal advection and diffusion within a global vortex. In the Northern Hemisphere, cyclonic, equatorward PV banners accumulate zonally into a single zonally symmetric positive PV anomaly. The anticyclonic, poleward PV banners also accumulate into a zonally symmetric feature, but then diffuse over the North Pole into a negative PV polar cap. In the Southern Hemisphere, the same processes are at work, though the different geographic configuration of mountain ranges leads to different patterns of impacts.
Abstract
Mountain ranges are regional features on Earth, as are the regions of mountain-wave drag (MWD) exerted by dissipating atmospheric gravity waves generated by flow over them. However, these regional drags have significant global- or zonal-mean impacts on Earth’s atmospheric general circulation (e.g., slowing of the polar night jet). The objective of this work is to understand the regional to global evolution of these impacts. The approach is to track the evolution of MWD-generated potential vorticity (PV) over the winter using the Whole Atmosphere Community Climate Model (WACCM). Within an ensemble of winter-long runs with and without MWD, lower-stratospheric PV is generated over mountains and advected downstream, generating large-scale PV banners. These PV banners are diffused but survive this diffusion and are reinforced over downstream mountain ranges, accumulating into zonal-mean or global features within WACCM. A simple 2D model representing sources, advection, and diffusion of “passive PV” recreates the salient features in the WACCM results, suggesting the winter-long evolution of MWD-generated PV can be crudely understood in terms of horizontal advection and diffusion within a global vortex. In the Northern Hemisphere, cyclonic, equatorward PV banners accumulate zonally into a single zonally symmetric positive PV anomaly. The anticyclonic, poleward PV banners also accumulate into a zonally symmetric feature, but then diffuse over the North Pole into a negative PV polar cap. In the Southern Hemisphere, the same processes are at work, though the different geographic configuration of mountain ranges leads to different patterns of impacts.
Abstract
Recent airborne mountain-wave measurements over New Zealand in the lower stratosphere during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign allow for improved spectral analysis of velocities u, υ, and w, pressure p, and temperature T fluctuations. Striking characteristics of these data are the spectral breadth and the different spectral shapes of the different physical quantities. Using idealized complex terrain as a guide, the spectra are divided into the long-wave “volume mode” arising from airflow over the whole massif and the short-wave “roughness mode” arising from flow into and out of valleys. The roughness mode is evident in the aircraft data as an intense band of w power from horizontal wavelength λ = 8–40 km. The shorter part of this band (i.e., λ = 8–15 km) falls near the nonhydrostatic buoyancy cutoff (λ = 2πU/N). It penetrates easily into the lower stratosphere but carries little u power or momentum flux. The longer part of this roughness mode (i.e., λ = 15–40 km) carries most of the wave momentum flux. The volume mode for New Zealand, in the range λ = 200–400 km, is detected using the u-power, p-power, and T-power spectra. Typically, the volume mode carries a third or less of the total wave momentum flux, but it dominates the u power and thus may control the wave breakdown aloft. Spectra from numerical simulations agree with theory and aircraft data. Problems with the monochromatic assumption for wave observation and momentum flux parameterization are discussed.
Abstract
Recent airborne mountain-wave measurements over New Zealand in the lower stratosphere during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign allow for improved spectral analysis of velocities u, υ, and w, pressure p, and temperature T fluctuations. Striking characteristics of these data are the spectral breadth and the different spectral shapes of the different physical quantities. Using idealized complex terrain as a guide, the spectra are divided into the long-wave “volume mode” arising from airflow over the whole massif and the short-wave “roughness mode” arising from flow into and out of valleys. The roughness mode is evident in the aircraft data as an intense band of w power from horizontal wavelength λ = 8–40 km. The shorter part of this band (i.e., λ = 8–15 km) falls near the nonhydrostatic buoyancy cutoff (λ = 2πU/N). It penetrates easily into the lower stratosphere but carries little u power or momentum flux. The longer part of this roughness mode (i.e., λ = 15–40 km) carries most of the wave momentum flux. The volume mode for New Zealand, in the range λ = 200–400 km, is detected using the u-power, p-power, and T-power spectra. Typically, the volume mode carries a third or less of the total wave momentum flux, but it dominates the u power and thus may control the wave breakdown aloft. Spectra from numerical simulations agree with theory and aircraft data. Problems with the monochromatic assumption for wave observation and momentum flux parameterization are discussed.
Abstract
We propose a simplified scheme to predict mountain wave drag over complex terrain using only the regional-average low-level wind components U and V. The scheme is tuned and tested on data from the South Island of New Zealand, a rough and highly anisotropic terrain. The effect of terrain anisotropy is captured with a hydrostatically computed, 2 × 2 positive-definite wave drag matrix. The wave drag vector is the product of the wind vector and the drag matrix. The nonlinearity in wave generation is captured using a Gaussian terrain smoothing inversely proportional to wind speed. Wind speeds of |U| = 10, 20, and 30 m s−1 give smoothing scales of L = 54, 27, and 18 km, respectively. This smoothing treatment of nonlinearity is consistent with recent aircraft data and high-resolution numerical modeling of waves over New Zealand, indicating that the momentum flux spectra shift to shorter waves during high-drag conditions. The drag matrix model is tested against a 3-month time series of realistic full-physics wave-resolving flow calculations. Correlation coefficients approach 0.9 for both zonal and meridional drag components.
Abstract
We propose a simplified scheme to predict mountain wave drag over complex terrain using only the regional-average low-level wind components U and V. The scheme is tuned and tested on data from the South Island of New Zealand, a rough and highly anisotropic terrain. The effect of terrain anisotropy is captured with a hydrostatically computed, 2 × 2 positive-definite wave drag matrix. The wave drag vector is the product of the wind vector and the drag matrix. The nonlinearity in wave generation is captured using a Gaussian terrain smoothing inversely proportional to wind speed. Wind speeds of |U| = 10, 20, and 30 m s−1 give smoothing scales of L = 54, 27, and 18 km, respectively. This smoothing treatment of nonlinearity is consistent with recent aircraft data and high-resolution numerical modeling of waves over New Zealand, indicating that the momentum flux spectra shift to shorter waves during high-drag conditions. The drag matrix model is tested against a 3-month time series of realistic full-physics wave-resolving flow calculations. Correlation coefficients approach 0.9 for both zonal and meridional drag components.
Abstract
Mountain waves (MWs) are generated during episodic cross-barrier flow over broad-spectrum terrain. However, most MW drag parameterizations neglect transient, broad-spectrum dynamics. Here, the influences of these dynamics on both nondissipative and dissipative momentum deposition by MW events are quantified in a 2D, horizontally periodic idealized framework. The influences of the MW spectrum, vertical wind shear, and forcing duration are investigated. MW events are studied using three numerical models—the nonlinear, transient WRF Model; a linear, quasi-transient Fourier-ray model; and an optimally tuned Lindzen-type saturation parameterization—allowing quantification of total, nondissipative, and dissipative MW-induced decelerations, respectively. Additionally, a pseudomomentum diagnostic is used to estimate nondissipative decelerations within the WRF solutions. For broad-spectrum MWs, vertical dispersion controls spectrum evolution aloft. Short MWs propagate upward quickly and break first at the highest altitudes. Subsequently, the arrival of additional longer MWs allows breaking at lower altitudes because of their greater contribution to u variance. As a result, minimum breaking levels descend with time and event duration. In zero- and positive-shear environments, this descent is not smooth but proceeds downward in steps as a result of vertically recurring steepening levels. Nondissipative decelerations are nonnegligible and influence an MW’s approach to breaking, but breaking and dissipative decelerations quickly develop and dominate the subsequent evolution. Comparison of the three model solutions suggests that the conventional instant propagation and monochromatic parameterization assumptions lead to too much MW drag at too low an altitude.
Abstract
Mountain waves (MWs) are generated during episodic cross-barrier flow over broad-spectrum terrain. However, most MW drag parameterizations neglect transient, broad-spectrum dynamics. Here, the influences of these dynamics on both nondissipative and dissipative momentum deposition by MW events are quantified in a 2D, horizontally periodic idealized framework. The influences of the MW spectrum, vertical wind shear, and forcing duration are investigated. MW events are studied using three numerical models—the nonlinear, transient WRF Model; a linear, quasi-transient Fourier-ray model; and an optimally tuned Lindzen-type saturation parameterization—allowing quantification of total, nondissipative, and dissipative MW-induced decelerations, respectively. Additionally, a pseudomomentum diagnostic is used to estimate nondissipative decelerations within the WRF solutions. For broad-spectrum MWs, vertical dispersion controls spectrum evolution aloft. Short MWs propagate upward quickly and break first at the highest altitudes. Subsequently, the arrival of additional longer MWs allows breaking at lower altitudes because of their greater contribution to u variance. As a result, minimum breaking levels descend with time and event duration. In zero- and positive-shear environments, this descent is not smooth but proceeds downward in steps as a result of vertically recurring steepening levels. Nondissipative decelerations are nonnegligible and influence an MW’s approach to breaking, but breaking and dissipative decelerations quickly develop and dominate the subsequent evolution. Comparison of the three model solutions suggests that the conventional instant propagation and monochromatic parameterization assumptions lead to too much MW drag at too low an altitude.
Abstract
As numerical models of complex atmospheric flows increase their quality and resolution, it becomes valuable to isolate and quantify the embedded resolved gravity waves. The authors propose a spatial filtering method combined with a selection of quadratic diagnostic quantities such as heat, momentum, and energy fluxes to do this. These covariant quantities were found to be insensitive to filter cutoff length scales between 300 and 700 km, suggesting the existence of a “cospectral gap.” The gravity waves identified with the proposed method display known properties from idealized studies, including vertical propagation, upwind propagation, the relationship between momentum and energy flux, and agreement with fluxes derived from an alternative method involving simulations with and without terrain. The proposed method is applied to 2- and 6-km-resolution realistic WRF simulations of orographic and nonorographic gravity waves over and around New Zealand within complex frontal cyclones. Deep mountain wave, shallow mountain wave, jet-generated gravity wave, and convection-generated gravity wave events were chosen for analysis. The four wave events shared the characteristics of positive vertical energy flux, negative zonal momentum flux, and upwind horizontal energy flux. Two of the gravity wave events were dissipated nonlinearly.
Abstract
As numerical models of complex atmospheric flows increase their quality and resolution, it becomes valuable to isolate and quantify the embedded resolved gravity waves. The authors propose a spatial filtering method combined with a selection of quadratic diagnostic quantities such as heat, momentum, and energy fluxes to do this. These covariant quantities were found to be insensitive to filter cutoff length scales between 300 and 700 km, suggesting the existence of a “cospectral gap.” The gravity waves identified with the proposed method display known properties from idealized studies, including vertical propagation, upwind propagation, the relationship between momentum and energy flux, and agreement with fluxes derived from an alternative method involving simulations with and without terrain. The proposed method is applied to 2- and 6-km-resolution realistic WRF simulations of orographic and nonorographic gravity waves over and around New Zealand within complex frontal cyclones. Deep mountain wave, shallow mountain wave, jet-generated gravity wave, and convection-generated gravity wave events were chosen for analysis. The four wave events shared the characteristics of positive vertical energy flux, negative zonal momentum flux, and upwind horizontal energy flux. Two of the gravity wave events were dissipated nonlinearly.
Abstract
The vertical propagation and attenuation of mountain waves launched by New Zealand terrain during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign are investigated. New Zealand mountain waves were frequently attenuated in a lower-stratospheric weak wind layer between z = 15 and 25 km. This layer is termed a “valve layer,” as conditions within this layer (primarily minimum wind speed) control mountain wave momentum flux through it, analogous to a valve controlling mass flux through a pipe. This valve layer is a climatological feature in the wintertime midlatitude lower stratosphere above the subtropical jet.
Mountain wave dynamics within this valve layer are studied using realistic Weather Research and Forecasting (WRF) Model simulations that were extensively validated against research aircraft, radiosonde, and satellite observations. Locally, wave attenuation is horizontally and vertically inhomogeneous, evidenced by numerous regions with wave-induced low Richardson numbers and potential vorticity generation. WRF-simulated gravity wave drag (GWD) is peaked in the valve layer, and momentum flux transmitted through this layer is well approximated by a cubic function of minimum ambient wind speed within it, consistent with linear saturation theory. Valve-layer GWD within the well-validated WRF simulations was 3–6 times larger than that parameterized within MERRA. Previous research suggests increasing parameterized orographic GWD (performed in MERRA2) decreases the stratospheric polar vortex strength by altering planetary wave propagation and drag. The results reported here suggest carefully increasing orographic GWD is warranted, which may help to ameliorate the common cold-pole problem in chemistry–climate models.
Abstract
The vertical propagation and attenuation of mountain waves launched by New Zealand terrain during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign are investigated. New Zealand mountain waves were frequently attenuated in a lower-stratospheric weak wind layer between z = 15 and 25 km. This layer is termed a “valve layer,” as conditions within this layer (primarily minimum wind speed) control mountain wave momentum flux through it, analogous to a valve controlling mass flux through a pipe. This valve layer is a climatological feature in the wintertime midlatitude lower stratosphere above the subtropical jet.
Mountain wave dynamics within this valve layer are studied using realistic Weather Research and Forecasting (WRF) Model simulations that were extensively validated against research aircraft, radiosonde, and satellite observations. Locally, wave attenuation is horizontally and vertically inhomogeneous, evidenced by numerous regions with wave-induced low Richardson numbers and potential vorticity generation. WRF-simulated gravity wave drag (GWD) is peaked in the valve layer, and momentum flux transmitted through this layer is well approximated by a cubic function of minimum ambient wind speed within it, consistent with linear saturation theory. Valve-layer GWD within the well-validated WRF simulations was 3–6 times larger than that parameterized within MERRA. Previous research suggests increasing parameterized orographic GWD (performed in MERRA2) decreases the stratospheric polar vortex strength by altering planetary wave propagation and drag. The results reported here suggest carefully increasing orographic GWD is warranted, which may help to ameliorate the common cold-pole problem in chemistry–climate models.
Abstract
This paper describes the results of a comprehensive analysis of the atmospheric conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign in austral winter 2014. Different datasets and diagnostics are combined to characterize the background atmosphere from the troposphere to the upper mesosphere. How weather regimes and the atmospheric state compare to climatological conditions is reported upon and how they relate to the airborne and ground-based gravity wave observations is also explored. Key results of this study are the dominance of tropospheric blocking situations and low-level southwesterly flows over New Zealand during June–August 2014. A varying tropopause inversion layer was found to be connected to varying vertical energy fluxes and is, therefore, an important feature with respect to wave reflection. The subtropical jet was frequently diverted south from its climatological position at 30°S and was most often involved in strong forcing events of mountain waves at the Southern Alps. The polar front jet was typically responsible for moderate and weak tropospheric forcing of mountain waves. The stratospheric planetary wave activity amplified in July leading to a displacement of the Antarctic polar vortex. This reduced the stratospheric wind minimum by about 10 m s−1 above New Zealand making breaking of large-amplitude gravity waves more likely. Satellite observations in the upper stratosphere revealed that orographic gravity wave variances for 2014 were largest in May–July (i.e., the period of the DEEPWAVE field phase).
Abstract
This paper describes the results of a comprehensive analysis of the atmospheric conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign in austral winter 2014. Different datasets and diagnostics are combined to characterize the background atmosphere from the troposphere to the upper mesosphere. How weather regimes and the atmospheric state compare to climatological conditions is reported upon and how they relate to the airborne and ground-based gravity wave observations is also explored. Key results of this study are the dominance of tropospheric blocking situations and low-level southwesterly flows over New Zealand during June–August 2014. A varying tropopause inversion layer was found to be connected to varying vertical energy fluxes and is, therefore, an important feature with respect to wave reflection. The subtropical jet was frequently diverted south from its climatological position at 30°S and was most often involved in strong forcing events of mountain waves at the Southern Alps. The polar front jet was typically responsible for moderate and weak tropospheric forcing of mountain waves. The stratospheric planetary wave activity amplified in July leading to a displacement of the Antarctic polar vortex. This reduced the stratospheric wind minimum by about 10 m s−1 above New Zealand making breaking of large-amplitude gravity waves more likely. Satellite observations in the upper stratosphere revealed that orographic gravity wave variances for 2014 were largest in May–July (i.e., the period of the DEEPWAVE field phase).
Abstract
During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) project in June and July 2014, the Gulfstream V research aircraft flew 97 legs over the Southern Alps of New Zealand and 150 legs over the Tasman Sea and Southern Ocean, mostly in the low stratosphere at 12.1-km altitude. Improved instrument calibration, redundant sensors, longer flight legs, energy flux estimation, and scale analysis revealed several new gravity wave properties. Over the sea, flight-level wave fluxes mostly fell below the detection threshold. Over terrain, disturbances had characteristic mountain wave attributes of positive vertical energy flux (EF z ), negative zonal momentum flux, and upwind horizontal energy flux. In some cases, the fluxes changed rapidly within an 8-h flight, even though environmental conditions were nearly unchanged. The largest observed zonal momentum and vertical energy fluxes were MF x = −550 mPa and EF z = 22 W m−2, respectively.
A wide variety of disturbance scales were found at flight level over New Zealand. The vertical wind variance at flight level was dominated by short “fluxless” waves with wavelengths in the 6–15-km range. Even shorter scales, down to 500 m, were found in wave breaking regions. The wavelength of the flux-carrying mountain waves was much longer—mostly between 60 and 150 km. In the strong cases, however, with EF z > 4 W m−2, the dominant flux wavelength decreased (i.e., “downshifted”) to an intermediate wavelength between 20 and 60 km. A potential explanation for the rapid flux changes and the scale “downshifting” is that low-level flow can shift between “terrain following” and “envelope following” associated with trapped air in steep New Zealand valleys.
Abstract
During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) project in June and July 2014, the Gulfstream V research aircraft flew 97 legs over the Southern Alps of New Zealand and 150 legs over the Tasman Sea and Southern Ocean, mostly in the low stratosphere at 12.1-km altitude. Improved instrument calibration, redundant sensors, longer flight legs, energy flux estimation, and scale analysis revealed several new gravity wave properties. Over the sea, flight-level wave fluxes mostly fell below the detection threshold. Over terrain, disturbances had characteristic mountain wave attributes of positive vertical energy flux (EF z ), negative zonal momentum flux, and upwind horizontal energy flux. In some cases, the fluxes changed rapidly within an 8-h flight, even though environmental conditions were nearly unchanged. The largest observed zonal momentum and vertical energy fluxes were MF x = −550 mPa and EF z = 22 W m−2, respectively.
A wide variety of disturbance scales were found at flight level over New Zealand. The vertical wind variance at flight level was dominated by short “fluxless” waves with wavelengths in the 6–15-km range. Even shorter scales, down to 500 m, were found in wave breaking regions. The wavelength of the flux-carrying mountain waves was much longer—mostly between 60 and 150 km. In the strong cases, however, with EF z > 4 W m−2, the dominant flux wavelength decreased (i.e., “downshifted”) to an intermediate wavelength between 20 and 60 km. A potential explanation for the rapid flux changes and the scale “downshifting” is that low-level flow can shift between “terrain following” and “envelope following” associated with trapped air in steep New Zealand valleys.
Abstract
Internal gravity waves (GWs) are ubiquitous in the atmosphere, making significant contributions to the mesoscale motions. Since the majority of their spectrum is unresolved in global circulation models, their effects need to be parameterized. In recent decades GWs have been increasingly studied in high-resolution simulations, which, unlike direct observations, allow us to explore full spatio-temporal variations of the resolved wave field. In our study we analyze and refine a traditional method for GW analysis in a high-resolution simulation on a regional domain around the Drake Passage. We show that GW momentum drag estimates based on the Gaussian high-pass filter method applied to separate GW perturbations from the background are sensitive to the choice of a cutoff parameter. The impact of the cutoff parameter is higher for horizontal fluxes of horizontal momentum, which indicates higher sensitivity for horizontally propagating waves. Two modified methods, which choose the parameter value from spectral information, are proposed. The dynamically determined cutoff is mostly higher than the traditional cutoff values around 500 km, leading to larger GW fluxes and drag, and varies with time and altitude. The differences between the traditional and the modified methods are especially pronounced during events with significant drag contributions from horizontal momentum fluxes.
Abstract
Internal gravity waves (GWs) are ubiquitous in the atmosphere, making significant contributions to the mesoscale motions. Since the majority of their spectrum is unresolved in global circulation models, their effects need to be parameterized. In recent decades GWs have been increasingly studied in high-resolution simulations, which, unlike direct observations, allow us to explore full spatio-temporal variations of the resolved wave field. In our study we analyze and refine a traditional method for GW analysis in a high-resolution simulation on a regional domain around the Drake Passage. We show that GW momentum drag estimates based on the Gaussian high-pass filter method applied to separate GW perturbations from the background are sensitive to the choice of a cutoff parameter. The impact of the cutoff parameter is higher for horizontal fluxes of horizontal momentum, which indicates higher sensitivity for horizontally propagating waves. Two modified methods, which choose the parameter value from spectral information, are proposed. The dynamically determined cutoff is mostly higher than the traditional cutoff values around 500 km, leading to larger GW fluxes and drag, and varies with time and altitude. The differences between the traditional and the modified methods are especially pronounced during events with significant drag contributions from horizontal momentum fluxes.
Abstract
Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e.,
Significance Statement
This study had three purposes: to quantitatively evaluate how well four state-of-the-science weather models could reproduce observed mountain waves (MWs) in the middle atmosphere, to compare the simulated MWs within the models, and to quantitatively evaluate two MW parameterizations in a widely used climate model. These models reproduced observed MWs with remarkable skill. Still, MW parameterizations are necessary in current Δx ≈ 10-km resolution global weather models. Even Δx ≈ 3-km resolution does not appear to be high enough to represent all momentum-fluxing MW scales. Meridionally propagating MWs can significantly influence zonal winds over the Drake Passage. Parameterizations that handle horizontal propagation may need to consider horizontal fluxes of horizontal momentum in order to get the direction of their forcing correct.
Abstract
Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx = 3-km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e.,
Significance Statement
This study had three purposes: to quantitatively evaluate how well four state-of-the-science weather models could reproduce observed mountain waves (MWs) in the middle atmosphere, to compare the simulated MWs within the models, and to quantitatively evaluate two MW parameterizations in a widely used climate model. These models reproduced observed MWs with remarkable skill. Still, MW parameterizations are necessary in current Δx ≈ 10-km resolution global weather models. Even Δx ≈ 3-km resolution does not appear to be high enough to represent all momentum-fluxing MW scales. Meridionally propagating MWs can significantly influence zonal winds over the Drake Passage. Parameterizations that handle horizontal propagation may need to consider horizontal fluxes of horizontal momentum in order to get the direction of their forcing correct.