Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: Christopher J. Smith x
  • All content x
Clear All Modify Search
Karen L. Smith, Christopher G. Fletcher, and Paul J. Kushner

Abstract

The classical problem of predicting the atmospheric circulation response to extratropical surface forcing is revisited in the context of the observed connection between autumnal snow cover anomalies over Siberia and wintertime anomalies of the northern annular mode (NAM). Previous work has shown that in general circulation model (GCM) simulations in which autumnal Siberian snow forcing is prescribed, a vertically propagating Rossby wave train is generated that propagates into the stratosphere, drives dynamical stratospheric warming, and induces a negative NAM response that couples to the troposphere. Important questions remain regarding the dynamics of the response to this surface cooling. It is shown that previously unexplained aspects of the evolution of the response in a comprehensive GCM can be explained by examining the time evolution of the phasing, and hence the linear interference, between the Rossby wave response and the background climatological stationary wave. When the wave response and background wave are in phase, wave activity into the stratosphere is amplified and the zonal-mean stratosphere–troposphere NAM response displays a negative tendency; when they are out of phase, wave activity into the stratosphere is reduced and the NAM response displays a positive tendency. The effects of linear interference are probed further in a simplified GCM, where an imposed lower tropospheric cooling is varied in position, strength, and sign. As in the comprehensive GCM, linear interference strongly influences the response over a realistic range of forcing strengths. The transition from linear to nonlinear behavior is shown to depend simply on forcing strength.

Full access
Amanda C. Maycock, Christopher J. Smith, Alexandru Rap, and Owain Rutherford

Abstract

The SOCRATES offline radiative transfer code is used to investigate the magnitude and structure of the instantaneous radiative forcing kernels (IRFKs) for five major greenhouse gases (GHGs; CO2, CH4, N2O, CFC-11, and O3). All gases produce IRFKs that peak in the tropical upper troposphere. In addition to differences in spectroscopic intensities and the position of absorption features relative to the peak of the Planck function for Earth’s temperature, the variation in current background concentration of gases substantially affects the IRFK magnitudes. When the background concentration of CO2 is reduced from parts per million to parts per trillion levels, the peak magnitude of the IRFK increases by a factor of 642. When all gases are set to parts per trillion concentrations in the troposphere, the peak IRFK magnitudes are 1.0, 3.0, 3.1, 58 and 75 Wm−2 ppmv−1 100 hPa−1 for CH4, CO2, N2O, O3 and CFC-11, respectively. The altitude of the IRFK maximum also differs, with the maximum for CFC-11 and water vapour occurring above 100 hPa while the other gases peak near 150-200 hPa. Overlap with water vapour absorption decreases the magnitude of the IRFKs for all the GHGs, particularly in the low-to-mid troposphere, but it does not strongly affect the peak IRFK altitude. Cloud radiative effects reduce the magnitude of the IRFK for CO2 by around 10-20% in the upper troposphere. The use of IRFKs to estimate IRF is found to be accurate for small amplitude perturbations, but becomes inaccurate for large amplitude changes (e.g. a doubling) for gases with a higher atmospheric optical depth.

Restricted access
William J. Dow, Amanda C. Maycock, Marcus Lofverstrom, and Christopher J. Smith

Abstract

Past studies have suggested that regional trends in anthropogenic aerosols can influence the Pacific decadal oscillation (PDO) through modulation of the Aleutian low. However, the robustness of this connection is debated. This study analyzes changes to the Aleutian low in an ensemble of climate models forced with large, idealized global and regional black carbon (BC) and sulfate aerosol perturbations. To isolate the role of ocean feedbacks, the experiments are performed with an interactive ocean and with prescribed sea surface temperatures. The results show a robust weakening of the Aleutian low forced by a global tenfold increase in BC in both experiment configurations. A linearized steady-state primitive equation model is forced with diabatic heating anomalies to investigate the mechanisms through which heating from BC emissions influences the Aleutian low. The heating from BC absorption over India and East Asia generates Rossby wave trains that propagate into the North Pacific sector, forming an upper-tropospheric ridge. Sources of BC outside of East Asia enhance the weakening of the Aleutian low. The responses to a global fivefold and regional tenfold increase in sulfate aerosols over Asia show poor consistency across climate models, with a multimodel mean response that does not project strongly onto the Aleutian low. These findings for a large, idealized step increase in regional sulfate aerosol differ from previous studies that suggest the transient increase in sulfate aerosols over Asia during the early twenty-first century weakened the Aleutian low and induced a transition to a negative PDO phase.

Restricted access
Wei Liu, Francis P. Bretherton, Zhengyu Liu, Leslie Smith, Hao Lu, and Christopher J. Rutland

Abstract

The breaking of a monochromatic two-dimensional internal gravity wave is studied using a newly developed spectral/pseudospectral model. The model features vertical nonperiodic boundary conditions that ensure a realistic simulation of wave breaking during the wave propagation. Isopycnal overturning is induced at a local wave steepness of sc = 0.75–0.79, which is below the conventional threshold of s = 1. Isopycnal overturning is a sufficient condition for subsequent wave breaking by convective instability. When s = sc, little primary wave energy is being transferred to high-mode harmonics. Beyond s = 1, high-mode harmonics grow rapidly. Primary wave energy is more efficiently transferred by waves of lower frequency. A local gradient Richardson number is defined as Ri = −(g/ρ 0)(/dz)/ζ 2 to isolate convective instability (Ri ≤ 0) and wave-induced shear instability (0 < Ri < 0.25), where /dz is the local vertical density gradient and ζ is the horizontal vorticity. Consistent with linear wave theory, the probability density function (PDF) for occurrence of convective instability has a maximum at wave phase ϕ = π/2, where the wave-induced density perturbations to the background stratification are the greatest, whereas the wave-induced shear instability has maxima around ϕ = 0 (wave trough) and ϕ = π (wave crest). Nonlinearities in the wave-induced flow broaden the phase span in PDFs of both instabilities. Diapycnal mixing in numerical simulations may be compared with that in realistic oceanic flows in terms of the Cox number. In the numerical simulations, the Cox numbers increase from 1.5 (s = 0.78) to 21.5 (s = 1.1), and the latter is in the lower range of reported values for the ocean.

Full access
Dennis J. Musil, Sundar A. Christopher, Regina A. Deola, and Paul L. Smith

Abstract

This study investigates some of the characteristics or the interior regions of several hailstorms penetrated by the armored T-28 aircraft during the 1981 CCOPE field project. The vertical wind data were analyzed to identify updraft and downdraft regions to facilitate the discussion of measurements made within the identified draft regions, such as draft sizes and speeds, cloud liquid water concentrations (LWC), turbulent and hail.

Updrafts were more numerous than downdraft regions, tended to have greater horizontal extent and higher speeds, and were somewhat more turbulent. Significant correlations existed between peak vertical wind speeds and peak values of LWC or turbulence, as well as (for updrafts) between peak speed and draft size. Values of the LWC were generally quite low compared to adiabatic values, with the exception of two large severe hailstorms that may have had adiabatic updraft cores. The general characteristics of the hail observations, such as number and mass concentrations, maximum sizes, and locations within specific draft regions are discussed. Reflectivity gradients computed from radar measurements were compared with the had observations from the two largest storms; the analysis shows that the hail tended to be located in high-reflectivity regions rather than in regions of high-reflectivity gradient. The data are discussed in terms of possible implications for numerical modeling or precipitation process in convective storms.

Full access
Christopher B. Smith, Mercedes N. Lakhtakia, William J. Capehart, and Toby N. Carlson

The purpose of this study is to demonstrate the feasibility of determining the soil-water content fields required as initial conditions for land surface components within atmospheric prediction models. This is done using a model of the hydrologic balance and conventional meteorological observations, land cover, and soils information.

A discussion is presented of the subgrid-scale effects, the integration time, and the choice of vegetation type on the soil-water content patterns. Finally, comparisons are made between two The Pennsylvania State University/National Center for Atmospheric Research mesoscale model simulations, one using climatological fields and the other one using the soil-moisture fields produced by this new method.

Full access
Stephanie Schollaert Uz, Antonio J. Busalacchi, Thomas M. Smith, Michael N. Evans, Christopher W. Brown, and Eric C. Hackert

Abstract

Historical understanding of marine biological dynamics has been limited by sparse in situ observations and the fact that dedicated ocean color satellite remote sensing only began in 1997. From these observations, it has become clear that physical oceanography controls biological variability over seasonal to interannual time scales. To quantify how multidecadal, climate-scale patterns impact biological productivity, the strong correlation with sea surface temperature and sea surface height is utilized to reconstruct a retrospective 51-yr time series of surface chlorophyll, the pigment measured by ocean color satellites. The canonical correlation analysis statistical reconstruction demonstrates greatest skill away from land and within about 10° of the equator where chlorophyll variance is greatest and predominantly associated with El Niño–Southern Oscillation dynamics. Differences in chlorophyll patterns between east or central Pacific El Niño events are observed, with larger declines east of 180° for east Pacific events and west of 180° for central Pacific events. Additionally, small but significant decadal variations in chlorophyll patterns are observed corresponding to the Pacific decadal oscillation. Decadal changes in chlorophyll west of 180° are consistent with increased stratification, whereas changes between 110°–140°W may be related to long-term shoaling of the nutrient-bearing equatorial undercurrent.

Full access
Christopher J. Smith, Julia A. Crook, Rolf Crook, Lawrence S. Jackson, Scott M. Osprey, and Piers M. Forster

Abstract

In recent years, the idea of geoengineering, artificially modifying the climate to reduce global temperatures, has received increasing attention because of the lack of progress in reducing global greenhouse gas emissions. Stratospheric sulfate injection (SSI) is a geoengineering method proposed to reduce planetary warming by reflecting a proportion of solar radiation back into space that would otherwise warm the surface and lower atmosphere. The authors analyze results from the Met Office Hadley Centre Global Environment Model, version 2, Carbon Cycle Stratosphere (HadGEM2-CCS) climate model with stratospheric emissions of 10 Tg yr−1 of SO2, designed to offset global temperature rise by around 1°C. A reduction in concentrating solar power output of 5.9% on average over land is shown under SSI relative to a baseline future climate change scenario (RCP4.5) caused by a decrease in direct radiation. Solar photovoltaic energy is generally less affected as it can use diffuse radiation, which increases under SSI, at the expense of direct radiation. The results from HadGEM2-CCS are compared with the Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM) from the Geoengineering Model Intercomparison Project (GeoMIP), with 5 Tg yr−1 emission of SO2. In many regions, the differences predicted in solar energy output between the SSI and RCP4.5 simulations are robust, as the sign of the changes for both HadGEM2-CCS and GEOSCCM agree. Furthermore, the sign of the total and direct annual mean radiation changes evaluated by HadGEM2-CCS agrees with the sign of the multimodel mean changes of an ensemble of GeoMIP models over the majority of the world.

Full access
Matthew J. Smith, Paul I. Palmer, Drew W. Purves, Mark C. Vanderwel, Vassily Lyutsarev, Ben Calderhead, Lucas N. Joppa, Christopher M. Bishop, and Stephen Emmott

New details about natural and anthropogenic processes are continually added to models of the Earth system, anticipating that the increased realism will increase the accuracy of their predictions. However, perspectives differ about whether this approach will improve the value of the information the models provide to decision makers, scientists, and societies. The present bias toward increasing realism leads to a range of updated projections, but at the expense of uncertainty quantification and model tractability. This bias makes it difficult to quantify the uncertainty associated with the projections from any one model or to the distribution of projections from different models. This in turn limits the utility of climate model outputs for deriving useful information such as in the design of effective climate change mitigation and adaptation strategies or identifying and prioritizing sources of uncertainty for reduction. Here we argue that a new approach to model development is needed, focused on the delivery of information to support specific policy decisions or science questions. The central tenet of this approach is the assessment and justification of the overall balance of model detail that reflects the question posed, current knowledge, available data, and sources of uncertainty. This differs from contemporary practices by explicitly seeking to quantify both the benefits and costs of details at a systemic level, taking into account the precision and accuracy with which predictions are made when compared to existing empirical evidence. We specify changes to contemporary model development practices that would help in achieving this goal.

Full access
Wiebe A. Oost, Christopher W. Fairall, James B. Edson, Stuart D. Smith, Robert J. Anderson, John A.B. Wills, Kristina B. Katsaros, and Janice DeCosmo

Abstract

Several methods are examined for correction of turbulence and eddy fluxes in the atmospheric boundary layer, two of them based on a potential-flow approach initiated by Wyngaard. If the distorting object is cylindrical or if the distance to the sensor is much greater than the size of the body, the undisturbed wind stress can be calculated solely from measurements made by the sensor itself; no auxiliary measurements or lengthy model calculations are needed. A more general potential-flow correction has been developed in which distorting objects of complex shape are represented as a number of ellipsoidal elements.

These models are applied to data from three turbulence anemometers with differing amounts of flow distortion, operated simultaneously in the Humidity Exchange over the Sea (HEXOS) Main Experiment. The results are compared with wind-stress estimates by the inertial-dissipation technique; these are much less sensitive to local flow distortion and are consistent with the corrected eddy correlation results. From these comparisons it is concluded that the commonly used “tilt correction” is not sufficient to correct eddy wind stress for distortion by nearby objects, such as probe supports and neighboring sensors.

Neither potential-flow method is applicable to distortion by larger bodies of a scale comparable to the measuring height, such as the superstructure of the Meetpost Noordwijk (MPN) platform used in HEXOS. Flow distortion has been measured around a model of MPN in a wind tunnel study. The results were used to correct mean winds, but simulation of distortion effects on turbulence levels and wind stress turned out not to be feasible.

Full access