Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Chungang Chen x
  • Refine by Access: All Content x
Clear All Modify Search
Chungang Chen
,
Juzhong Bin
, and
Feng Xiao

Abstract

A third-order numerical model is developed for global advection transport computation. The multimoment constrained finite-volume scheme has been implemented to the hexagonal geodesic grid for spherical geometry. Two kinds of moments (i.e., point value and volume-integrated average) are used as the constraint conditions to derive the time evolution equations to update the computational variables, which are the values defined at the specified points over each mesh element in the present model. The numerical model has rigorous numerical conservation and third-order accuracy. One of the major merits of the present method is that it does not explicitly involve numerical quadrature, which leads to great convenience in accurately computing curved geometry and source terms. The present paper provides an accurate and practical formulation for advection calculation in the hexagonal-type geodesic grid.

Full access
Chungang Chen
,
Feng Xiao
, and
Xingliang Li

Abstract

An adaptive global shallow-water model is proposed on cubed-sphere grid using the multimoment finite volume scheme and the Berger–Oliger adaptive mesh refinement (AMR) algorithm that was originally designed for a Cartesian grid. On each patch of the cubed-sphere grid, the curvilinear coordinates are constructed in a way that the Berger–Oliger algorithm can be applied directly. Moreover, an algorithm to transfer data across neighboring patches is proposed to establish a practical integrated framework for global AMR computation on the cubed-sphere grid.

The multimoment finite volume scheme is adopted as the fluid solver and is essentially beneficial to the implementation of AMR on the cubed-sphere grid. The multimoment interpolation based on both volume-integrated average (VIA) and point value (PV) provides the compact reconstruction that makes the present scheme very attractive not only in dealing with the artificial boundaries between different patches but also in the coarse–fine interpolations required in the AMR computations. The single-cell-based reconstruction avoids involving more than two nesting levels during interpolations. The reconstruction profile of constrained interpolation profile–conservative semi-Lagrangian scheme with third-order polynomial function (CIP-CSL3) is adopted where the slope parameter provides a flexible and convenient switching to get the desired numerical properties, such as high-order (fourth order) accuracy, monotonicity, and positive definiteness.

Numerical experiments with typical benchmark tests for both advection equation and shallow-water equations are carried out to evaluate the proposed model. The numerical errors and the corresponding CPU times of numerical experiments on uniform and adaptive meshes verify the performance of the proposed model. Compared to the uniformly refined grid, the AMR technique is able to achieve the similar numerical accuracy with less computational cost.

Full access
Xingliang Li
,
Chungang Chen
,
Xueshun Shen
, and
Feng Xiao

Abstract

The two-dimensional nonhydrostatic compressible dynamical core for the atmosphere has been developed by using a new nodal-type high-order conservative method, the so-called multimoment constrained finite-volume (MCV) method. Different from the conventional finite-volume method, the predicted variables (unknowns) in an MCV scheme are the values at the solution points distributed within each mesh cell. The time evolution equations to update the unknown point values are derived from a set of constraint conditions based on the multimoment concept, where the constraint on the volume-integrated average (VIA) for each mesh cell is cast into a flux form and thus guarantees rigorously the numerical conservation. Two important features make the MCV method particularly attractive as an accurate and practical numerical framework for atmospheric and oceanic modeling. 1) The predicted variables are the nodal values at the solution points that can be flexibly located within a mesh cell (equidistant solution points are used in the present model). It is computationally efficient and provides great convenience in dealing with complex geometry and source terms. 2) High-order and physically consistent formulations can be built by choosing proper constraints in view of not only numerical accuracy and efficiency but also underlying physics. In this paper the authors present a dynamical core that uses the third- and the fourth-order MCV schemes. They have verified the numerical outputs of both schemes by widely used standard benchmark tests and obtained competitive results. The present numerical core provides a promising and practical framework for further development of nonhydrostatic compressible atmospheric models.

Full access
Yuzhang Che
,
Chungang Chen
,
Feng Xiao
,
Xingliang Li
, and
Xueshun Shen

Abstract

A new multimoment global shallow-water model on the cubed sphere is proposed by adopting a two-stage fourth-order Runge–Kutta time integration. Through calculating the values of predicted variables at half time step t = t n + (1/2)Δt by a second-order formulation, a fourth-order scheme can be derived using only two stages within one time step. This time integration method is implemented in our multimoment global shallow-water model to build and validate a new and more efficient numerical integration framework for dynamical cores. As the key task, the numerical formulation for evaluating the derivatives in time has been developed through the Cauchy–Kowalewski procedure and the spatial discretization of the multimoment finite-volume method, which ensures fourth-order accuracy in both time and space. Several major benchmark tests are used to verify the proposed numerical framework in comparison with the existing four-stage fourth-order Runge–Kutta method, which is based on the method of lines framework. The two-stage fourth-order scheme saves about 30% of the computational cost in comparison with the four-stage Runge–Kutta scheme for global advection and shallow-water models. The proposed two-stage fourth-order framework offers a new option to develop high-performance time marching strategy of practical significance in dynamical cores for atmospheric and oceanic models.

Free access