Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Chunyu Zhao x
  • Refine by Access: All Content x
Clear All Modify Search
Xue Yi
,
Deqin Li
,
Chunyu Zhao
,
Lidu Shen
, and
Xiaoyu Zhou

Abstract

High-density surface networks have become available in recent years in a number of regions throughout the world, but their utility in high-resolution dynamic downscaling has not been examined. As an attempt to fill such a gap, a suite of high-resolution (4 km) dynamical downscaling simulations is developed in this study with the Weather Research and Forecasting (WRF) Model and observation nudging over Liaoning in northeastern China. Three experiments, including no nudging (CTL), analysis nudging (AN), and combined analysis nudging and observation nudging with surface observations (AON), are conducted to downscale the CFSv2 reanalysis with the WRF Model for the year 2015. The three 1-yr regional climate simulations were compared with the independent surface observations. The results show that observational nudging can improve the simulation of surface variables, including temperature, wind speed, humidity, and pressure, more than nudging large-scale driving data with AN alone. The two nudging simulations can improve the cold bias for the temperature of the WRF Model. For precipitation, both the simulations with AN and observation nudging can capture the pattern of precipitation; however, with the introduction of small-scale information at the surface, AON cannot further improve the simulation of precipitation.

Free access
Er Lu
,
Wei Zhao
,
Xukai Zou
,
Dianxiu Ye
,
Chunyu Zhao
, and
Qiang Zhang

Abstract

A method is developed in this study to monitor and detect extreme precipitation events. For a rainfall event to be severe, it should last for a long period and affect a wide region while maintaining a strong intensity. However, if the duration is inappropriately taken as too long and the region is inappropriately taken as too wide, then the averaged intensity might be too weak. There should be a balance among the three quantities. Based upon understanding of the issue, the authors proposed a simple mathematical model, which contains two reasonable constraints. The relation of the “extreme” intensity with both duration and region (EIDR) is derived. With the prescribed baseline extreme intensities, the authors calculate the relative intensities with the data. Through comparison among different time periods and spatial sizes, one can identify the event that is most extreme, with its starting time, duration, and geographic region being determined. Procedures for monitoring the extreme event are provided. As an example, the extreme event contained in the 1991 persistent heavy rainfall over east China is detected.

Full access