Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Cian Woods x
  • All content x
Clear All Modify Search
Cian Woods and Rodrigo Caballero

Abstract

This paper examines the trajectories followed by intense intrusions of moist air into the Arctic polar region during autumn and winter and their impact on local temperature and sea ice concentration. It is found that the vertical structure of the warming associated with moist intrusions is bottom amplified, corresponding to a transition of local conditions from a “cold clear” state with a strong inversion to a “warm opaque” state with a weaker inversion. In the marginal sea ice zone of the Barents Sea, the passage of an intrusion also causes a retreat of the ice margin, which persists for many days after the intrusion has passed. The authors find that there is a positive trend in the number of intrusion events crossing 70°N during December and January that can explain roughly 45% of the surface air temperature and 30% of the sea ice concentration trends observed in the Barents Sea during the past two decades.

Full access
Gabriele Messori, Cian Woods, and Rodrigo Caballero

Abstract

The salient features and drivers of wintertime warm and cold spells in the high Arctic are investigated. The analysis is based on the European Centre for Medium-Range Weather Forecasts interim reanalysis dataset. It is found that the warm spells are systematically associated with an intense sea level pressure and geopotential height anomaly dipole, displaying a low over the Arctic basin and a high over northern Eurasia. This configuration creates a natural pathway for extreme moisture influx episodes from the Atlantic sector into the Arctic (herein termed moisture intrusions). Anomalous cyclone frequency at the pole (largely attributable to local cyclogenesis) then favors a deep penetration of these intrusions across the Arctic basin. The large-scale circulation pattern associated with the warm spells further favors the advection of cold air across Siberia, leading to the so-called warm Arctic–cold Eurasia pattern previously discussed in the literature. On the contrary, cold Arctic extremes are associated with a severely reduced frequency of moisture intrusions and a persistent low pressure system over the pole. This effectively isolates the high latitudes from midlatitude air masses, favoring an intense radiative cooling of the polar region.

Open access
Cian Woods, Rodrigo Caballero, and Gunilla Svensson

Abstract

This paper examines the wintertime northward moisture flux at 70°N from 1981–2005 in 31 of the CMIP5 models compared with the ERA-Interim reanalysis product. The models’ total zonally integrated northward moisture flux is found to agree reasonably well with the reanalysis, but with large compensating regional biases. Specifically, the models systematically underpredict the moisture flux in the Atlantic sector and overpredict it in the Pacific sector. The biases are predominantly due to misrepresentation of extreme moisture flux events, which are known to exert a significant control on Arctic climate. Biases in these high-intensity fluxes are almost entirely contributed by biases in the meridional velocity, suggesting a link with biases in storm-track activity at lower latitudes. The extent to which the deficit of moisture intrusions in the Atlantic sector and excess in the Pacific sector may account for biases in the climate of the respective sectors is assessed. Biases in the frequency of moisture intrusions explain roughly 17% of surface temperature and 24% of surface downward longwave radiation biases in the Atlantic sector, and about 14% and 16% of the gradient in these respective biases between the two sectors. The predicted bias gradients, while small in amplitude, are very highly correlated with the true bias gradients in the models, suggesting that the temperature bias directly induced by misrepresented intrusion statistics may be strongly amplified by sea ice feedback.

Full access
Gabriele Messori, Cian Woods, and Rodrigo Caballero
Open access
Yinghui Liu, Jeffrey R. Key, Steve Vavrus, and Cian Woods

Abstract

Northward fluxes of moisture and sensible heat into the Arctic affect the atmospheric stability, sea ice and snow cover, clouds, and surface energy budget. Intense moisture fluxes into the Arctic are called moisture intrusions; some can lead to basinwide increases in downward longwave radiation (DLR) at the surface, called downward infrared (IR) events. Using the ERA-Interim reanalysis from 1990 to 2016, this study investigated the time evolution of cloud amount and cloud properties and their impact on the surface radiation fluxes in response to Arctic moisture intrusions and downward IR events during winter for better understanding of the Arctic moisture intrusions. A composite analysis revealed several key features: moisture intrusions produce more clouds and higher cloud liquid and ice water content; positive cloud amount anomalies can persist for over 10 days over the Arctic Ocean during downward IR events; positive high-level and middle-level cloud anomalies are evident in the early stage, and positive low-level cloud anomalies are evident in the late stage. Greater clear-sky DLR and longwave cloud radiative forcing (CRF) over the Arctic Ocean accompany the greater all-sky DLR during the downward IR events. Greater clear-sky DLR can be attributed to higher air temperatures and higher total column water vapor, while greater longwave CRF is the result of larger cloud amount and cloud water content. Longwave CRF anomalies account for approximately 40% of the all-sky DLR anomalies.

Open access
Laurent Brodeau, Bernard Barnier, Sergey K. Gulev, and Cian Woods

Abstract

This paper quantifies the impacts of approximations and assumptions in the parameterization of bulk formulas on the exchange of momentum, heat, and freshwater computed between the ocean and atmosphere. An ensemble of sensitivity experiments is examined. Climatologies of wind stress, turbulent heat flux, and evaporation for the period 1982–2014 are computed using SST and surface meteorological state variables from ERA-Interim. Each experiment differs from the defined control experiment in only one aspect of the parameterization of the bulk formulas. The wind stress is most sensitive to the closure used to relate the neutral drag coefficient to the wind speed in the bulk algorithm, which mainly involves the value of the Charnock parameter. The disagreement between the state-of-the-art algorithms examined is typically on the order of 10%. The largest uncertainties in turbulent heat flux and evaporation are also related to the choice of the algorithm (typically 15%) but also emerge in experiments examining approximations related to the surface temperature and saturation humidity. Thus, approximations for the skin temperature and the salt-related reduction of saturation humidity have a substantial impact on the heat flux and evaporation (typically 10%). Approximations such as the use of a fixed air density, sea level pressure, or simplified formula for the saturation humidity lead to errors no larger than 4% when tested individually. The impacts of these approximations combine linearly when implemented together, yielding errors up to 20% over mid- and subpolar latitudes.

Full access