Search Results

You are looking at 1 - 10 of 26 items for

  • Author or Editor: Clark Evans x
  • Refine by Access: All Content x
Clear All Modify Search
Giorgio Sarro
and
Clark Evans

Abstract

The transformation stage of extratropical transition characterizes the process by which a tropical cyclone transforms into an extratropical cyclone at higher latitudes in a cooler, more baroclinic environment. A 2006 study connects extremes in transformation-stage duration, post-transformation intensity change, and post-transformation thermal structure for North Atlantic basin tropical cyclones to synoptic-scale environmental variability. However, the 2006 study’s findings are derived from coarse atmospheric analyses that include fictitious tropical cyclone vortices applied to small samples with substantial variability between cases. This study updates the 2006 study’s findings using larger sample sizes, improvements in atmospheric reanalysis resolution and fidelity, and advances in scientific understanding over the last two decades. Transformation-stage duration is primarily a function of the duration that a transforming cyclone remains in an environment supportive of tropical development after entering a region supportive of baroclinic development. Post-transformation intensity-change composites are distinguished primarily by whether proper phasing is achieved between the transforming cyclone and upstream trough following the transformation stage. Finally, post-transformation thermal structure is distinguished primarily by whether the transforming cyclone moves into a strongly confluent synoptic-scale environment following the transformation stage. This study also presents the first composite analyses of North Atlantic tropical cyclones that maintain a lower-tropospheric warm-core structure post-transformation, termed instant warm-seclusion cyclones, which have previously only been diagnosed in case studies of individual North Atlantic tropical cyclones and for a limited climatology of western North Pacific tropical cyclones. These cyclones, comprising approximately one-third of all cases, are characterized by the transforming TC becoming negatively tilted with respect to the upstream trough and undergoing cyclonic Rossby wave breaking.

Restricted access
Kevin C. Prince
and
Clark Evans

Abstract

While it is understood that a recurving tropical cyclone (TC) that interacts with the midlatitude flow can cause large changes to the midlatitude flow pattern, it is much less understood if, and how, such events could impact a downstream tropical cyclone. Here, an indirect TC interaction is defined as one in which a primary TC perturbs the downstream midlatitude waveguide within one synoptic-scale wavelength of a secondary TC. In this study, a climatology and composite analysis using ERA-Interim reanalysis data is completed for all indirect interactions occurring between two tropical and/or subtropical cyclones in the North Atlantic and western North Pacific basins between 1989 and 2018. In all, 26 cases are identified in the North Atlantic and 56 cases are identified in the western North Pacific. The composite-mean interaction between a primary TC and upstream trough amplifies the immediate downstream ridge, increasing the tropospheric-deep vertical wind shear on its poleward and, in the western North Pacific, eastern, and equatorward flanks. An amplified downstream trough is detectable farther downstream in the western North Pacific 1–2 days after interaction onset; however, the same is not true in the North Atlantic, in which some cases exhibit anticyclonic Rossby wave breaking of the immediate downstream ridge. Secondary TCs that weaken following the indirect-interaction events are primarily located along the gradient between the downstream ridge and trough (North Atlantic) or at high latitudes (western North Pacific); those that strengthen are primarily located equatorward of the downstream ridge, particularly in the western North Pacific.

Free access
Caleb T. Grunzke
and
Clark Evans

Abstract

The predictability and dynamics of the warm-core mesovortex associated with the northern flank of the 8 May 2009 “super derecho” event are examined by coupling the Advanced Research Weather Research and Forecasting Model with the ensemble adjustment Kalman filter implementation within the Data Assimilation Research Testbed facility. Cycled analysis started at 1200 UTC 2 May 2009, with observations assimilated every 6 h until 1200 UTC 7 May 2009, at which time a 50-member ensemble of 36-h convection-allowing ensemble forecasts were launched. The ensemble forecasts all simulated a mesoscale convective system, but only 7 out of 50 members produced a warm-core mesovortex-like feature similar in intensity to the observed mesovortex.

Ensemble sensitivity and composite analyses were conducted to analyze the environmental differences between ensemble members. A more amplified upstream upper-level trough near the time of observed convection initiation is associated with a stronger simulated mesovortex. The amplification of the trough results in increases in the magnitudes of the low-level jet and thermal gradient. Consequently, more moisture is transported poleward into western Kansas, leading to earlier convection initiation in ensemble members with the strongest mesovortices. A circulation budget is performed on the ensemble members with the strongest (member 10) and weakest (member 5) time-averaged circulations. The ascending front-to-rear flow, descending rear-to-front flow, and divergent low-level flow of an MCS are more prominent in member 10, which is hypothesized to allow for the convergence of more background cyclonic absolute vorticity and, thus, facilitating the development of a stronger mesovortex.

Full access
Clark Evans
and
Robert E. Hart

Abstract

Extratropical transition brings about a number of environmentally induced structural changes within a transitioning tropical cyclone. Of particular interest among these changes is the acceleration of the wind field away from the cyclone’s center of circulation along with the outward movement of the radial wind maximum, together termed wind field expansion. Previous informal hypotheses aimed at understanding this evolution do not entirely capture the observed expansion, while a review of the literature shows no formal work done upon the topic beyond analyzing its occurrence. This study seeks to analyze the physical and dynamical mechanisms behind the wind field expansion using model simulations of a representative transition case, North Atlantic Tropical Cyclone Bonnie of 1998. The acceleration of the wind field along the outer periphery of the cyclone is found to be a function of the net import of absolute angular momentum within the cyclone’s environment along inflowing trajectories. This evolution is shown to be a natural outgrowth of the development of isentropic conveyor belts and asymmetries associated with extratropical cyclones. Asymmetries in the outer-core wind field manifest themselves via the tightening and development of height and temperature gradients within the cyclone’s environment. Outward movement of the radial wind maximum occurs coincident with integrated net cooling found inside the radius of maximum winds. Tests using a secondary circulation balance model show the radial wind maximum evolution to be similar yet opposite to the response noted for intensifying tropical cyclones with contracting eyewalls.

Full access
Kevin C. Prince
and
Clark Evans

Abstract

A tropical cyclone (TC) that recurves into the midlatitudes can lead to significant downstream flow amplification by way of a favorable interaction with the midlatitude waveguide. Current conceptualizations emphasize the role of the meso-α- to synoptic-scale diabatically enhanced vertical redistribution of potential vorticity in facilitating downstream flow amplification following the interaction of a TC with the midlatitude waveguide. Less understood, however, is the extent to which this downstream flow amplification may be facilitated by the convective-scale diabatically enhanced horizontal redistribution of potential vorticity. Consequently, this study aims to diagnose the role that deep, moist convection in an associated predecessor rain event north of the TC played in influencing the midlatitude waveguide and potentially the downstream evolution. A convection-allowing numerical simulation is performed on a predecessor rain event that precedes the interaction of North Atlantic TC Irma in September 2017 with the midlatitude waveguide. Horizontal gradients in microphysical heating result in intense convective-scale potential vorticity dipoles aligned perpendicular to the vertical wind shear vector, with the negative anomaly poleward (and thus closer to the midlatitude waveguide) of the large-scale southwesterly vertical wind shear vector. Regions of intensely negative potential vorticity persist for multiple hours after their formation as they become deformed by the large-scale strain field that is aligned parallel to the background vertical wind shear vector. The deformation-driven thinning of the negative potential vorticity is associated with a transfer of energy to the large-scale flow, suggesting a nonnegligible impact to the TC–midlatitude waveguide interaction by the collection of convective cells embedded in the predecessor rain event.

Restricted access
Kevin C. Prince
and
Clark Evans

Abstract

Cold surges represent one of several phenomena by which midlatitude features can modulate the atmosphere, both dynamically and thermodynamically, deep into the tropics. This study involves the construction of a climatology of the strongest South American cold surges that follow along the Andes Mountains to quantify the extent to which these surges modulate the atmosphere from the midlatitudes to the tropics. Cold surges occurring during June–September (austral winter) from 1980 to 2017 are considered. In this study, cold-surge events are identified using standardized anomalies of 925-hPa meridional wind and 925-hPa temperature. As compared with previous cold-surge investigations, the use of standardized anomalies better enables spatial variation in cold-surge intensity and impacts to be quantified. A strong cold surge is defined as one in which the 925-hPa temperature is at least 3 standardized anomalies below 0 and the 925-hPa meridional wind is at least 3 standardized anomalies above 0 on the meso-α scale or larger. Using these criteria, 67 events are identified. The composite cold surge is characterized by highly anomalous cold, southerly flow that originates in northern Argentina and progresses northward, significantly modulating lower-tropospheric kinematic and thermodynamic fields across the entire Amazon basin over a period of 2 to as many as 8 days.

Full access
Juliana M. Karloski
and
Clark Evans

Abstract

Considering a subset of the North Atlantic Ocean south of 30°N and east of 75°W, Kossin found that the Atlantic tropical cyclone (TC) season increased in length, at 80%–90% confidence, by about 2 days per year between 1980 and 2007. It is uncertain, however, whether the same is true over the entire Atlantic basin or when the analysis is extended to 2014. Separately, it is unclear whether meaningful subseasonal variability in the environmental factors necessary for TC formation exists between early- and late-starting (ending) seasons. Quantile regression is used to evaluate long-term trends in Atlantic TC season length. No statistically significant trend in season length exists for the period 1979–2007 when considering the entire Atlantic basin or for the period 1979–2014 independent of the portion of the basin considered. Linear regression applied to June and November monthly mean reanalysis data is used to examine subseasonal environmental variability between early- and late-starting (ending) seasons. Within an otherwise favorable environment for genesis, early-starting seasons are associated with increased lower-tropospheric relative vorticity where most early-season TCs form. Late-ending seasons are associated with La Niña, negative-phase Pacific decadal oscillation events, and environmental conditions that promote an increased likelihood of TC development along the preferred genesis pathways for late-season TCs. While confidence in these results is relatively high, they explain only a small portion of the total variation in Atlantic TC season length. More research is needed to understand how variability on all time scales influences Atlantic TC season length and its predictability.

Full access
David S. Nevius
and
Clark Evans

Abstract

Previous studies have suggested that the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) Model is unable, in its default configuration, to adequately resolve the capping inversions that are commonly found in the warm-season, thunderstorm-supporting environments of the central United States. Since capping inversions typically form in environments of synoptic-scale subsidence, this study tests the hypothesis that this degradation results, in part, from implicit numerical damping of shorter-wavelength features associated with the model-default third-order-accurate vertical advection finite-differencing scheme. To aid in testing this hypothesis, two short-range, deterministic, convection-allowing model forecasts, one using the default third-order-accurate vertical advection finite-differencing scheme and another using a fourth-order-accurate differencing scheme (which lacks implicit damping but is numerically dispersive), are conducted for 25 days during the 2017 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Model-derived vertical profiles at lead times of 11 and 23 h are validated against available rawinsonde observations released in regions located in the Storm Prediction Center’s 0600 UTC day 1 convection outlook’s “general thunderstorm” forecast area. The fourth-order-accurate vertical advection finite-differencing scheme is shown to not result in statistically significant improvements to model-forecast capping inversions or, more generally, the vertical thermodynamic profile in the lower troposphere. Instead, the fourth-order-accurate differencing scheme primarily impacts the representation of longer-wavelength features already reasonably well resolved by the model. The analysis does, however, provide quantitative evidence over a large sample that, on average, the WRF-ARW model forecasts capping inversions that are too weak, with negative buoyancy spread out over too deep of a vertical layer, compared to observations.

Full access
Robert E. Hart
,
Jenni L. Evans
, and
Clark Evans

Abstract

A 34-member ensemble-mean trajectory through the cyclone phase space (CPS) is calculated using Navy Operational Global Atmospheric Prediction System (NOGAPS) analyses for North Atlantic tropical cyclones (TCs) undergoing extratropical transition (ET). Synoptic composites at four ET milestones are examined: 24 h prior to the beginning of ET (TB − 24), the beginning of ET (TB ), the end of ET (TE ), and 24 h after the end of ET (TE + 24). While the extratropically transitioning TC structure is tightly constrained in its tropical phase, it has a variety of evolutions after TE . Partitioning the ensemble based upon post-ET intensity change or structure discriminates among statistically significant ET precursor conditions. Compositing the various post-ET intensity regimes provides insight into the important environmental factors governing post-ET development.

A TC that intensifies (weakens) after TE begins transition (t = TB ) with a negatively (positively) tilted trough 1000 km (1500 km) upstream. The negative tilt permits a contraction and intensification of the eddy potential vorticity (PV) flux, while the positive trough tilt prevents contraction and intensification of the forcing. In 6 of the 34 cases, the posttropical cold-core cyclone develops a warm-seclusion structure, rather than remaining cold core. Anticipation of this warm-seclusion evolution is critical since it represents a dramatically increased risk of middle- to high-latitude wind and wave damage. The warm-seclusion evolution is most favored when the scale of the interacting trough closely matches the scale of the transitioned TC, focusing the eddy PV flux in the outflow layer of the transitioning TC. The sensitivity of structural evolution prior to and after TE illustrated here gives insight into the degradation of global model midlatitude forecast accuracy during a pending ET event.

Eliassen–Palm flux cross sections suggest that ET is primarily driven by the eddy angular momentum flux of the trough, rather than the eddy heat flux associated with the trough. The response of the transitioning TC to the eddy angular momentum forcing is to produce adiabatic ascent and cooling radially inward and beneath the region of the forcing to restore thermal wind balance. In the case of ET, the forcing is maximized lower in the atmosphere, and spread over much greater depth, than in the case of trough-induced TC intensification. Only after TE is the eddy heat flux forcing as significant as the eddy angular momentum forcing, further supporting a physical foundation for the CPS description of cyclone evolution.

Full access
Clark Evans
,
Donald F. Van Dyke
, and
Todd Lericos

Abstract

The proliferation of ensemble forecast system output in recent years motivates this investigation into how operational forecasters utilize convection-permitting ensemble forecast system guidance in the forecast preparation process. A 16-member, convection-permitting ensemble forecast of the high-impact heavy precipitation resulting from Tropical Storm Fay (2008) is conducted and evaluated. The ensemble provides a skillful, albeit underdispersive and bimodal, forecast at all precipitation thresholds considered. A forecasting exercise is conducted to evaluate how forecasters utilize the ensemble forecast system guidance. Forecasters made two storm-total accumulated precipitation forecasts: one before and one after evaluating the ensemble guidance. Concurrently, forecasters were presented with questionnaires designed to gauge their thought processes in preparing each of their forecasts. Exercise participants felt that the high-resolution ensemble guidance added value and confidence to their forecasts, although it did not meaningfully reduce forecast uncertainty. Incorporation of the ensemble guidance into the forecast preparation process resulted in a modest mean improvement in forecast skill, with each forecast found to be skillful at all accumulated precipitation thresholds. Forecasters primarily utilized the ensemble guidance to identify a “most likely” forecast outcome from disparate deterministic guidance solutions and to help quantify the uncertainty associated with the forecast. Forecasters preferred ensemble guidance that enabled them to quickly understand the range of solutions provided by the ensemble, particularly over the entirety of the domain. Forecasters were generally aware of the diversity of solutions provided by the ensemble guidance; however, only a select few actively interrogated this information when revising their forecasts and each did so in different ways.

Full access