Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Claudia Schmid x
  • Refine by Access: All Content x
Clear All Modify Search
Claudia Schmid

Abstract

For a joint analysis of temperature profiles from floats, expendable bathythermographs (XBTs), and other instruments (e.g., thermistor chains) the consistency of the profiles from the different sources needs to be ensured to avoid results with systematic errors. In this study profiles from the different instrument types are compared after they passed through a series of quality control tests. The different methods for quality control are presented. After ensuring that only high-quality profiles remain in the dataset, a statistical analysis of the temperature differences between adjacent profiles (in space and time) is performed. Potential regional differences as well as possible differences between the various float types are addressed. Finally, the impact of combining the profiles from floats with those from other instruments on gridded fields of the mixed layer temperature, thickness, and heat budget is discussed. It is found that the joint analysis yields more reliable results for the gridded fields and the heat storage rate. A large part of this improvement is a result of the reduced seasonal bias.

Full access
Gregory R. Foltz
,
Claudia Schmid
, and
Rick Lumpkin

Abstract

The seasonal cycle of the mixed layer heat budget in the northeastern tropical Atlantic (0°–25°N, 18°–28°W) is quantified using in situ and satellite measurements together with atmospheric reanalysis products. This region is characterized by pronounced latitudinal movements of the intertropical convergence zone (ITCZ) and strong meridional variations of the terms in the heat budget. Three distinct regimes within the northeastern tropical Atlantic are identified. The trade wind region (15°–25°N) experiences a strong annual cycle of mixed layer heat content that is driven by approximately out-of-phase annual cycles of surface shortwave radiation (SWR), which peaks in boreal summer, and evaporative cooling, which reaches a minimum in boreal summer. The surface heat-flux-induced changes in the mixed layer heat content are damped by a strong annual cycle of cooling from vertical turbulent mixing, estimated from the residual in the heat balance. In the ITCZ core region (3°–8°N) a weak seasonal cycle of mixed layer heat content is driven by a semiannual cycle of SWR and damped by evaporative cooling and vertical turbulent mixing. On the equator the seasonal cycle of mixed layer heat content is balanced by an annual cycle of SWR that reaches a maximum in October and a semiannual cycle of turbulent mixing that cools the mixed layer most strongly during May–July and November. These results emphasize the importance of the surface heat flux and vertical turbulent mixing for the seasonal cycle of mixed layer heat content in the northeastern tropical Atlantic.

Full access
Gregory R. Foltz
,
Claudia Schmid
, and
Rick Lumpkin

Abstract

The transport of low-salinity water northward in the tropical and subtropical North Atlantic Ocean influences upper-ocean stratification, vertical mixing, and sea surface temperature (SST). In this study, satellite and in situ observations are used to trace low-salinity water northward from its source in the equatorial Atlantic and to examine its modification through air–sea fluxes and vertical mixing. In contrast to gridded climatologies, which depict a gradual northward dispersal of surface freshwater from the equatorial Atlantic, satellite observations and direct measurements from four moorings in the central tropical North Atlantic show a distinct band of surface freshwater moving northward from the equatorial Atlantic during boreal fall through spring, with drops in sea surface salinity (SSS) of 0.5–2.5 psu in the span of one to two weeks as the low SSS front passes. The ultimate low-latitude source of the low SSS water is found to be primarily Amazon River discharge west of 40°W and rainfall to the east. As the low-salinity water moves northward between 8° and 20°N during October–April, 70% of its freshwater in the upper 20 m is lost to the combination of evaporation, horizontal eddy diffusion, and vertical turbulent mixing, with an implied rate of SSS damping that is half of that for SST. During 1998–2012, interannual variations in SSS along 38°W are found to be negatively correlated with the strength of northward surface currents. The importance of ocean circulation for interannual variations of SSS and the small damping time scale for SSS emphasize the need to consider meridional freshwater advection when interpreting SSS variability in the tropical–subtropical North Atlantic.

Full access
Gregory R. Foltz
,
Claudia Schmid
, and
Rick Lumpkin

Abstract

The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) provides measurements of the upper ocean and near-surface atmosphere at 18 locations. Time series from many moorings are nearly 20 years in length. However, instrumental biases, data dropouts, and the coarse vertical resolutions of the oceanic measurements complicate their use for research. Here an enhanced PIRATA dataset (ePIRATA) is presented for the 17 PIRATA moorings with record lengths of at least seven years. Data in ePIRATA are corrected for instrumental biases, temporal gaps are filled using supplementary datasets, and the subsurface temperature and salinity time series are mapped to a uniform 5-m vertical grid. All original PIRATA data that pass quality control and that do not require bias correction are retained without modification, and detailed error estimates are provided. The terms in the mixed-layer heat and temperature budgets are calculated and included, with error bars. As an example of ePIRATA’s application, the vertical exchange of heat at the base of the mixed layer (Q h ) is calculated at each PIRATA location as the difference between the heat storage rate and the sum of the net surface heat flux and horizontal advection. Off-equatorial locations are found to have annual mean cooling rates of 20–60 W m−2, while cooling at equatorial locations reaches 85–110 W m−2 between 10° and 35°W and decreases to 40 W m−2 at 0°. At most off-equatorial locations, the strongest seasonal cooling from Q h occurs when winds are weak. Possible explanations are discussed, including the importance of seasonal modulations of mixed-layer depth and the diurnal cycle.

Full access
Claudia Schmid
,
Gerold Siedler
, and
Walter Zenk

Abstract

The circulation of the low-salinity Antarctic Intermediate Water in the South Atlantic and the associated dynamical processes are studied, using recent and historical hydrographic profiles, Lagrangian and Eulerian current measurements as well as wind stress observations. The circulation pattern inferred for the Antarctic Intermediate Water supports the hypothesis of an anticyclonic basinwide recirculation of the intermediate water in the subtropics. The eastward current of the intermediate anticyclone is fed mainly by water recirculated in the Brazil Current and by the Malvinas Current. An additional source region is the Polar Frontal zone of the South Atlantic. The transport in the meandering eastward current ranges from 6 to 26 Sv (Sv ≡ 106 m3 s−1). The transport of the comparably uniform westward flow of the gyre varies between 10 and 30 Sv. Both transports vary with longitude. At the western boundary near 28°S, in the Santos Bifurcation, the westward current splits into two branches. About three-quarters of the 19 Sv at 40°W go south as an intermediate western boundary current. The remaining quarter flows northward along the western boundary. Simulations with a simple model of the ventilated thermocline reveal that the wind-driven subtropical gyre has a vertical extent of over 1200 m. The transports derived from the simulations suggest that about 90% of the transport in the westward branch of the intermediate gyre and about 50% of the transport in the eastward branch can be attributed to the wind-driven circulation. The structure of the simulated gyre deviates from observations to some extent. The discrepancies between the simulations and the observations are most likely caused by the interoceanic exchange south of Africa, the dynamics of the boundary currents, the nonlinearity, and the seasonal variability of the wind field. A simulation with an inflow/outflow condition for the eastern boundary reduces the transport deviations in the eastward current to about 20%. The results support the hypothesis that the wind field is of major importance for the subtropical circulation of Antarctic Intermediate Water followed by the interoceanic exchange. The simulations suggest that the westward transport in the subtropical gyre undergoes seasonal variations. The transports and the structure of the intermediate subtropical gyre from the Parallel Ocean Climate Model (Semtner–Chervin model) agree better with observations.

Full access
Claudia Schmid
,
Hartmut Schäfer
,
Walter Zenk
, and
Guillermo Podestá

Abstract

In late austral summer 1991 a cyclonic thermocline eddy was detected in the subtropical western South Atlantic off the Brazilian shelf near the city of Vitória. This Vitória eddy was tracked for 55 days by surface drifters drogued at 100-m depth. The drifters had been deployed in the western boundary current regime by FS Meteor as part of a basinwide surface current study. The analysis of a combined CTD/XBT section across the Vitória eddy, together with drifter data and satellite images of the thermal surface structure revealed the unexpected complexity of the region. The eddy interacted not only with the local topography and the Brazil Current, located farther offshore, but also with an extended upwelling regime north of Cabo Frio. The hydrographic and kinematic properties and anomalies of the Vitóia eddy are analyzed and compared with similar vortices described elsewhere in literature.

Full access
Claudia Schmid
,
Robert L. Molinari
,
Reyna Sabina
,
Yeun-Ho Daneshzadeh
,
Xiangdong Xia
,
Elizabeth Forteza
, and
Huiqin Yang

Abstract

Argo is an internationally coordinated program directed at deploying and maintaining an array of 3000 temperature and salinity profiling floats on a global 3° latitude × 3° longitude grid. Argo floats are deployed from research vessels, merchant ships, and aircraft. After launch they sink to a prescribed pressure level (typically 1000–2000 dbar), where most floats remain for 10 days. The floats then return to the surface, collecting temperature and salinity profiles. At the surface they transmit the data to a satellite and sink again to repeat the cycle. As of 10 August 2006 there are 2489 floats reporting data. The International Argo Data Management Team oversees the development and implementation of the data management protocols of Argo. Two types of data systems are active—real time and delayed mode. The real-time system receives the transmissions from the Argo floats, extracts the data, checks their quality, and makes them available to the users. The objective of the real-time system is to provide Argo profiles to the operational and research community within 24 h of their measurement. This requirement makes it necessary to control the quality of the data automatically. The delayed-mode quality control is directed at a more detailed look at the profiles using statistical methods and scientific review of the data. In this paper, the real-time data processing and quality-control methodology is described in detail. Results of the application of these procedures to Argo profiles are described.

Full access
Peter Brandt
,
Verena Hormann
,
Arne Körtzinger
,
Martin Visbeck
,
Gerd Krahmann
,
Lothar Stramma
,
Rick Lumpkin
, and
Claudia Schmid

Abstract

Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.5° and 23°W during 1999–2008 as well as historical data referring to the period 1972–85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 μmol kg−1 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen–salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.

Full access
Ute Weber
,
Sabine Attinger
,
Burkard Baschek
,
Julia Boike
,
Dietrich Borchardt
,
Holger Brix
,
Nicolas Brüggemann
,
Ingeborg Bussmann
,
Peter Dietrich
,
Philipp Fischer
,
Jens Greinert
,
Irena Hajnsek
,
Norbert Kamjunke
,
Dorit Kerschke
,
Astrid Kiendler-Scharr
,
Arne Körtzinger
,
Christoph Kottmeier
,
Bruno Merz
,
Ralf Merz
,
Martin Riese
,
Michael Schloter
,
HaPe Schmid
,
Jörg-Peter Schnitzler
,
Torsten Sachs
,
Claudia Schütze
,
Ralf Tillmann
,
Harry Vereecken
,
Andreas Wieser
, and
Georg Teutsch

Abstract

Modular Observation Solutions of Earth Systems (MOSES) is a novel observation system that is specifically designed to unravel the impact of distinct, dynamic events on the long-term development of environmental systems. Hydrometeorological extremes such as the recent European droughts or the floods of 2013 caused severe and lasting environmental damage. Modeling studies suggest that abrupt permafrost thaw events accelerate Arctic greenhouse gas emissions. Short-lived ocean eddies seem to comprise a significant share of the marine carbon uptake or release. Although there is increasing evidence that such dynamic events bear the potential for major environmental impacts, our knowledge on the processes they trigger is still very limited. MOSES aims at capturing such events, from their formation to their end, with high spatial and temporal resolution. As such, the observation system extends and complements existing national and international observation networks, which are mostly designed for long-term monitoring. Several German Helmholtz Association centers have developed this research facility as a mobile and modular “system of systems” to record energy, water, greenhouse gas, and nutrient cycles on the land surface, in coastal regions, in the ocean, in polar regions, and in the atmosphere—but especially the interactions between the Earth compartments. During the implementation period (2017–21), the measuring systems were put into operation and test campaigns were performed to establish event-driven campaign routines. With MOSES’s regular operation starting in 2022, the observation system will then be ready for cross-compartment and cross-discipline research on the environmental impacts of dynamic events.

Open access
Gregory C. Johnson
,
Rick Lumpkin
,
Simone R. Alin
,
Dillon J. Amaya
,
Molly O. Baringer
,
Tim Boyer
,
Peter Brandt
,
Brendan R. Carter
,
Ivona Cetinić
,
Don P. Chambers
,
Lijing Cheng
,
Andrew U. Collins
,
Cathy Cosca
,
Ricardo Domingues
,
Shenfu Dong
,
Richard A. Feely
,
Eleanor Frajka-Williams
,
Bryan A. Franz
,
John Gilson
,
Gustavo Goni
,
Benjamin D. Hamlington
,
Josefine Herrford
,
Zeng-Zhen Hu
,
Boyin Huang
,
Masayoshi Ishii
,
Svetlana Jevrejeva
,
John J. Kennedy
,
Marion Kersalé
,
Rachel E. Killick
,
Peter Landschützer
,
Matthias Lankhorst
,
Eric Leuliette
,
Ricardo Locarnini
,
John M. Lyman
,
John J. Marra
,
Christopher S. Meinen
,
Mark A. Merrifield
,
Gary T. Mitchum
,
Ben I. Moat
,
R. Steven Nerem
,
Renellys C. Perez
,
Sarah G. Purkey
,
James Reagan
,
Alejandra Sanchez-Franks
,
Hillary A. Scannell
,
Claudia Schmid
,
Joel P. Scott
,
David A. Siegel
,
David A. Smeed
,
Paul W. Stackhouse
,
William Sweet
,
Philip R. Thompson
,
Joaquin A. Triñanes
,
Denis L. Volkov
,
Rik Wanninkhof
,
Robert A. Weller
,
Caihong Wen
,
Toby K. Westberry
,
Matthew J. Widlansky
,
Anne C. Wilber
,
Lisan Yu
, and
Huai-Min Zhang
Free access