Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Connell Miller x
  • Refine by Access: All Content x
Clear All Modify Search
Bernadette H. Connell and David R. Miller

Abstract

The authors review sources of error in radiosonde measurements in the atmospheric boundary layer and analyze errors of two radiosonde models manufactured by Atmospheric Instrumentation Research, Inc. The authors focus on temperature and humidity lag errors and wind errors. Errors in measurement of azimuth and elevation angles and pressure over short time intervals and at higher attitudes introduce wind vector errors greater than 5 m s−1. Mean temperature and humidity lag errors were small, and collectively, these tag errors had little effect on the calculation of the vertically integrated water vapor content. However, individual large lag errors occurred with dramatic changes in the environment, such as near the surface or at the top of the boundary layer. Dual-sonde flights showed mean instrument error comparable to lag error and had little effect on the calculation of the columnar water vapor content. A hypothetical consistent error of 5% in the measurement of relative humidity in a dry environment could introduce error in the calculation of columnar water vapor content up to 1 kg m−2.

Full access
David M. L. Sills, Gregory A. Kopp, Lesley Elliott, Aaron L. Jaffe, Liz Sutherland, Connell S. Miller, Joanne M. Kunkel, Emilio Hong, Sarah A. Stevenson, and William Wang

Abstract

Canada is a vast country with most of its population located along its southern border. Large areas are sparsely populated and/or heavily forested, and severe weather reports are rare when thunderstorms occur there. Thus, it has been difficult to accurately assess the true tornado climatology and risk. It is also important to establish a reliable baseline for tornado-related climate change studies. The Northern Tornadoes Project (NTP), led by Western University, is an ambitious multidisciplinary initiative aimed at detecting and documenting every tornado that occurs across Canada. A team of meteorologists and wind engineers collects research-quality data during each damage investigation via thorough ground surveys and high-resolution satellite, aircraft, and drone imaging. Crowdsourcing through social media is also key to tracking down events. In addition, NTP conducts research to improve our ability to detect and accurately assess tornadoes that affect forests, cropland, and grassland. An open data website allows sharing of resulting datasets and analyses. Pilot investigations were carried out during the warm seasons of 2017 and 2018, with the scope expanding from the detection of any tornadoes in heavily forested regions of central Canada in 2017 to the detection of all EF1+ tornadoes in Ontario plus all significant events outside of Ontario in 2018. The 2019 season was the first full campaign, systematically collecting research-quality tornado data across the entire country. To date, the project has found 89 tornadoes that otherwise would not have been identified, and increased the national tornado count in 2019 by 78%.

Full access