Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Cornelia Schwierz x
  • Refine by Access: All Content x
Clear All Modify Search
Heini Wernli
and
Cornelia Schwierz

Abstract

A novel method is introduced to generate climatological frequency distributions of meteorological features from gridded datasets. The method is used here to derive a climatology of extratropical cyclones from sea level pressure (SLP) fields. A simple and classical conception of cyclones is adopted where a cyclone is identified as the finite area that surrounds a local SLP minimum and is enclosed by the outermost closed SLP contour. This cyclone identification procedure can be applied to individual time instants, and climatologies of cyclone frequency, fc , are obtained by simple time averaging. Therefore, unlike most other climatologies, the method is not based on the application of a tracking algorithm and considers the size of cyclones. In combination with a conventional cyclone center tracking algorithm that allows the determination of cyclone life times and the location of cyclogenesis and cyclolysis, additional frequency fields can be obtained for special categories of cyclones that are generated in, move through, or decay in a specified geographical area.

The method is applied to the global SLP dataset for the time period 1958–2001 from the latest 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). In the Northern Hemisphere and during winter, the cyclone frequency field has three maxima in the Pacific storm track (with fc up to 35%), the Atlantic storm track (with fc up to 32%), and the Mediterranean (with fc up to 15%). During the other seasons the fc values are generally reduced in midlatitudes and the subtropical monsoon areas appear as regions with enhanced fc . In the Southern Hemisphere, the seasonal variations are smaller with year-round maxima of fc in the belt from 50° to 70°S (along the coast of Antarctica, with maximum values of almost 40%) and to the east of the Andes (with fc up to 35% during summer). Application of a lifetime threshold value significantly reduces fc , in particular over and close to the continents. Subsets of cyclone frequency fields are calculated for several subjectively chosen regions of cyclone genesis, passage, and lysis. They show some interesting aspects of the behavior of extratropical cyclones; cyclones that decay along the U.S. West Coast, for instance, have a short lifetime and originate almost exclusively from the eastern North Pacific, whereas long-lived and long-distance Pacific cyclones terminate farther north in the Gulf of Alaska.

The approach to calculate frequency distributions of atmospheric flow structures as introduced in this study can be easily applied to gridded data from global atmospheric models and assimilation systems. It combines the counts of atmospheric features with their area of influence, and hence provides a robust and easily interpretable measure of key meteorological structures when comparing and evaluating different analysis datasets and climate model integrations. Further work is required to comprehensively exploit the presented global ERA-40 cyclone climatology, in particular, aspects of its interannual variability.

Full access
Cornelia Schwierz
,
Sébastien Dirren
, and
Huw C. Davies

Abstract

The potential vorticity (PV) pattern in the vicinity of the jet stream takes the form of a narrow tube of enhanced PV gradient on the in situ isentropic surfaces. It is asserted that this distinctive structure can serve as a waveguide and a seat for trapped Rossby waves and that a neighboring vortexlike anomaly can trigger such waves and/or interact strongly with the jet. These conjectures are examined theoretically in an idealized setting comprising a finite-scale vortex forcing of a zonally aligned PV discontinuity. The quintessential dynamics of the vortex's influence upon the PV interface are first elucidated in the linear barotropic β-plane limit, and thereafter other aspects of the jet–vortex interaction are examined in a hemispheric primitive equation setting using a nonlinear numerical model.

It is shown that for the selected setting the interface can sustain trapped waves, a strong response is favored by larger-scale forcing, and a quasi-resonant response can prevail for some ambient flow settings, provided the vortex advects zonally at approximately the Doppler-shifted velocity of a trapped Rossby wave. It is also deduced that (i) a mesoscale perturbing vortex can retain its coherency despite the deforming effect of the ambient flow; (ii) the enhanced PV gradient can indeed serve as an effective waveguide; and (iii) the backreaction of the interface perturbations upon a weak mesoscale vortex need not be appreciable, and conversely for a stronger synoptic-scale vortex the interaction can lead to significant deformation of both vortex and interface with a tendency for a pairing of the vortex with an oppositely signed anomaly on the distorted interface. Comments are made on the relationship of the results to observed phenomena.

Full access
Lars Wiegand
,
Arwen Twitchett
,
Cornelia Schwierz
, and
Peter Knippertz

Abstract

Around 26 May 2008 a pronounced potential vorticity (PV) streamer penetrated from the North Atlantic into the western Mediterranean Sea followed by widespread dust mobilization over the Maghreb region of northwest Africa and a subsequent northward transport into central Europe. At the same time, strong southerly flow over the Mediterranean Sea caused heavy precipitation and flooding at the windward side of the European Alps. Using continuous and feature-based error measures, as well as ensemble correlation techniques, this study investigates the forecast quality and predictability of synoptic and mesoscale aspects of this high-impact event in operational ensemble predictions from nine meteorological centers participating in The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) project. TIGGE is a recently established program providing ensemble forecasts in a standardized format, which allows for an exciting new multimodel approach to investigating the predictability of, for example, high-impact weather and its dynamics. The main conclusions from this study are that 1) the quality of the PV streamer forecasts degrades with lead time showing a general tendency toward too weak Rossby wave; 2) when focusing on the region around the streamer, most models show root-mean-square errors of the same magnitude or larger than the ensemble spread (underdispersive behavior); 3) errors are reduced by about 50% if the comparison is made to each center’s own analysis instead of the ECMWF analysis; 4) peak wind speeds over the Sahara tend to be underpredicted, with differences in model formulation dominating over differences in the representation of the PV streamer; and 5) ensemble-mean multimodel forecasts of 4-day accumulated precipitation appear accurate enough for a successful severe-weather warning.

Full access
Linda Schlemmer
,
Olivia Martius
,
Michael Sprenger
,
Cornelia Schwierz
, and
Arwen Twitchett

Abstract

Extreme precipitation events along the Alpine south side (AS) are often forced by upper-level positive potential vorticity (PV) anomalies over western Europe. These so-called PV streamers go along with a dynamical forcing for upward motion, a reduction of the static stability in the troposphere (hence facilitating convection), and are associated with low-level winds that transport moisture toward the Alps.

A case of heavy precipitation is examined using the 40-yr ECMWF Re-Analysis data. Piecewise PV inversion (PPVI) and the limited-area Climate High Resolution Model (CHRM) are used to assess the influences of mesoscale parts of the streamer on the precipitation event. The impacts on the vertical stability are quantified by the convective available potential energy (CAPE) and an index of static stability. Very sensitive areas in terms of the stability are located beneath the southern tip of the streamer; smaller changes in the stability are observed in the Alpine region.

The moisture transport toward the Alps is sensitive to the amplitude of the streamer, which influences the amount of water that can be transported along its eastern flank.

The impacts of the topography on the flow are assessed by calculating an average inverse Froude number. Whether or not the air parcels are blocked by or lifted over the barrier (going along with suppressed and enhanced precipitation, respectively) depends on the vertical stability and the impinging wind velocity, two parameters that are inherently linked to the PV streamer and its substructure.

Full access