Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Courtenay Strong x
  • All content x
Clear All Modify Search
Courtenay Strong and Jessica Liptak

Abstract

For winters over eastern North America, complex Hilbert empirical orthogonal function (HEOF) analysis was used to objectively identify propagating patterns in four atmospheric fields that have potential relevance to precipitation: jet stream–level wind speed, 850-hPa moisture transport (q v), temperature advection (TA), and vorticity advection (VA). A novel phase shift method was used to show the location where each propagating pattern was most correlated with Midwest precipitation, and each of the four phase-shifted HEOF patterns was compared to its respective high-precipitation composite view. The leading HEOFs of the three transport fields (q v, TA, and VA), which collectively represented the dynamics associated with a midlatitude cyclone, accounted for almost half of Midwest precipitation variability and were associated with lake effect snow when propagating downstream from the Midwest. Correlation and spectral analyses revealed how the propagating transport patterns were related to the Pacific–North American pattern and other teleconnections. The leading HEOF of jet stream–level wind speed, which represented the tendency for the jet stream to migrate equatorward over the study region during winter, accounted for only about 4% of Midwest daily precipitation variability. In contrast, the second HEOF of jet stream–level wind speed, which represented an eastward propagating trough dynamically consistent with a midlatitude cyclone, accounted for 16% of Midwest daily precipitation variability.

Full access
Jessica Liptak and Courtenay Strong

Abstract

A novel analysis method involving phase-shifted complex Hilbert empirical orthogonal functions (HEOFs) was used to examine how variations in predominant propagating patterns of Arctic surface wind influence daily Fram Strait sea ice export F during extended winter (October–April), a primary control on Arctic sea ice volume. Northwesterly winds favorable to F were provided by poleward-moving anticyclones upstream over the Canadian Arctic associated with the leading HEOF of wind and also by eastward-moving cyclones downstream over the Barents Sea associated with the second HEOF of wind. A suite of spatial and statistical analyses indicated that the aggregate of the two propagating patterns largely explains a sea level pressure pattern analyzed in several prior studies as a standing wave oriented east–west across the strait.

Full access
Courtenay Strong and Gudrun Magnusdottir

Abstract

Objective analysis of several hundred thousand anticyclonic and cyclonic breaking Rossby waves is performed for the Northern Hemisphere (NH) winters of 1958–2006. A winter climatology of both anticyclonic and cyclonic Rossby wave breaking (RWB) frequency and size (zonal extent) is presented for the 350-K isentropic surface over the NH, and the spatial distribution of RWB is shown to agree with theoretical ideas of RWB in shear flow.

Composites of the two types of RWB reveal their characteristic sea level pressure anomalies, upper- and lower-tropospheric velocity fields, and forcing of the upper-tropospheric zonal flow. It is shown how these signatures project onto the centers of action and force the velocity patterns associated with the North Atlantic Oscillation (NAO) and Northern Hemisphere annular mode (NAM). Previous studies have presented evidence that anticyclonic (cyclonic) breaking leads to the positive (negative) polarity of the NAO, and this relationship is confirmed for RWB over the midlatitudes centered near 50°N. However, an opposite and statistically significant relationship, in which cyclonic RWB forces the positive NAO and anticyclonic RWB forces the negative NAO, is shown over regions 20° to the north and south, centered at 70° and 30°N, respectively.

On a winter mean basis, the frequency of RWB over objectively defined regions covering 12% of the area of the NH accounts for 95% of the NAO index and 92% of the NAM index. A 6-hourly analysis of all the winters indicates that RWB over the objectively defined regions affects the NAO/NAM without a time lag. Details of the objective wave-breaking analysis method are provided in the .

Full access
Courtenay Strong and Gudrun Magnusdottir

Abstract

The role of Rossby wave breaking (RWB) is explored in the transient response of an atmospheric general circulation model to boundary forcing by sea ice anomalies related to the North Atlantic Oscillation (NAO). When the NCAR Community Climate Model, version 3, was forced by an exaggerated sea ice extent anomaly corresponding to one arising from a positive NAO, a localized baroclinic response developed and evolved into a larger-scale equivalent barotropic pattern resembling the negative polarity of the NAO. The initial baroclinic response shifted the phase speeds of the dominant eddies away from a critical value equal to the background zonal flow speed, resulting in significant changes in the spatial distribution of RWB. The forcing of the background zonal flow by the changes in RWB accounts for 88% of the temporal pattern of the response and 80% of the spatial pattern of the zonally averaged response. Although results here focus on one experiment, this “RWB critical line mechanism” appears to be relevant to understanding the equilibrium response in a broad class of boundary forcing experiments given increasingly clear connections among the northern annular mode, jet latitude shifts, and RWB.

Full access
Courtenay Strong and Gudrun Magnusdottir

Abstract

The leading pattern of extratropical Pacific sea surface temperature variability [the Pacific decadal oscillation (PDO)] is shown to depend on observed variability in the spatiotemporal distribution of tropospheric Rossby wave breaking (RWB), where RWB is the irreversible overturning of potential vorticity on isentropic surfaces. Composite analyses based on hundreds of RWB cases show that anticyclonic (cyclonic) RWB is associated with a warm, moist (cool, dry) column that extends down to a surface anticyclonic (cyclonic) circulation, and that the moisture and temperature advection associated with the surface circulation patterns force turbulent heat flux anomalies that project onto the spatial pattern of the PDO. The RWB patterns that are relevant to the PDO are closely tied to El Niño–Southern Oscillation, the Pacific–North American pattern, and the northern annular mode. These results explain the free troposphere-to-surface segment of the atmospheric bridge concept wherein El Niño anomalies emerge in summer and modify circulation patterns that act over several months to force sea surface temperature anomalies in the extratropical Pacific during late winter or early spring. Leading patterns of RWB account for a significant fraction of PDO interannual variability for any month of the year. A multilinear model is developed in which the January mean PDO index for 1958–2006 is regressed upon the leading principal components of cyclonic and anticyclonic RWB from the immediately preceding winter and summer months (four indexes in all), accounting for more than two-thirds of the variance.

Full access
Jessica Liptak and Courtenay Strong

Abstract

The feedback between Barents Sea ice and the winter atmosphere was studied in a modeling framework by decomposing it into two sequential boundary forcing experiments. The Community Ice Code (CICE) model was initialized with anomalously high sea ice concentration (SIC) over the Barents Sea and forced with an atmosphere produced by positive SIC anomalies, and CICE was initialized with low Barents Sea SIC and forced with an atmosphere produced by negative SIC anomalies. Corresponding control runs were produced by exposing the same SIC initial conditions to climatological atmospheres, and the monthly mean sea ice response showed a positive feedback over the Barents Sea for both experiments: the atmosphere produced by positive SIC anomalies increased SIC over the Barents Sea during the winter, and the atmosphere produced by negative SIC anomalies decreased SIC. These positive feedbacks were driven primarily by thermodynamic forcing from surface longwave flux anomalies and were weakened somewhat by atmospheric temperature advection. Dynamical effects also opposed the positive feedback, with enhanced surface wind stress divergence over the Barents Sea in the high-SIC case and enhanced convergence in the low-SIC case.

Full access
Jessica Liptak and Courtenay Strong

Abstract

The atmospheric response to sea ice anomalies over the Barents Sea during winter was determined by boundary forcing the Community Atmosphere Model (CAM) with daily varying high and low sea ice concentration (SIC) anomalies that decreased realistically from December to February. The high- and low-SIC anomalies produced localized opposite-signed responses of surface turbulent heat flux and wind stress that decreased in magnitude and extent as winter progressed. Responses of sea level pressure (SLP) and 500-mb height evolved from localized, opposite-signed features into remarkably similar large-scale patterns resembling the negative phase of the North Atlantic Oscillation (NAO). Hilbert empirical orthogonal function (HEOF) analysis of the composite high-SIC and low-SIC SLP responses uncovered how they differed. The hemispheric pattern in the leading HEOF was similar for the high-SIC and low-SIC responses, but the high-SIC response cycled through the pattern once per winter, whereas the low-SIC response cycled through the pattern twice per winter. The second HEOF differed markedly between the responses, with the high-SIC response featuring zonally oriented Atlantic and Pacific wave features and the low-SIC response featuring a meridionally oriented Atlantic dipole pattern.

Full access
Courtenay Strong and Robert E. Davis

Abstract

Numerous teleconnections have been identified based upon spatial variability in sea level pressure or lower-tropospheric geopotential height fields. These teleconnections, which are commonly strongest in winter when the mean meridional temperature gradient is large, typically are neither derived from nor linked to changes in the jet stream. Here, winter tropospheric jet stream cores over the Northern Hemisphere (NH) are recovered from 6-hourly gridded data and interannual variability in winter jet core position, speed, and pressure are investigated in the context of NH teleconnections. Common methods for researching jet stream speed and position variability may yield unrepresentative results because jet core pressure variability is ignored (only one isobaric surface is evaluated) or pressure variability effects are smoothed (values are vertically averaged across several isobaric surfaces). In this analysis, data are extracted at the surface of maximum wind, thus controlling for jet core pressure variability and allowing for a more representative tracking of three-dimensional jet core variations.

In the extratropics, the leading pattern of variability in jet core frequency is correlated with the Arctic Oscillation index (AOI) and appears as an oscillation about the spiral-shaped mean configuration of the winter jet stream. In contrast to previous research, the authors find no evidence of Pacific jet deceleration during positive AOI. The second leading mode of variability appears as a split (merged) winter-mean jet stream in the east Pacific together with a merged (split) winter-mean jet stream over North America, a pattern of change that correlates with the Pacific–North American pattern and is reflected in the amplitude of the long-wave ridge over western North America.

Full access
Kimberly Smith, Courtenay Strong, and Shih-Yu Wang

Abstract

The eastern Great Basin (GB) in the western United States is strongly affected by droughts that influence water management decisions. Precipitation that falls in the GB, particularly in the Great Salt Lake (GSL) basin encompassed by the GB, provides water for millions of people living along the Wasatch Front Range. Western U.S. precipitation is known to be influenced by El Niño–Southern Oscillation (ENSO) as well as the Pacific decadal oscillation (PDO) in the North Pacific. Historical connectivity between GB precipitation and Pacific Ocean sea surface temperatures (SSTs) on interannual to multidecadal time scales is evaluated for 20 models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). While the majority of the models had realistic ENSO and PDO spatial patterns in the SSTs, the simulated influence of these two modes on GB precipitation tended to be too strong for ENSO and too weak for PDO. Few models captured the connectivity at a quasi-decadal period influenced by the transition phase of the Pacific quasi-decadal oscillation (QDO; a recently identified climate mode that influences GB precipitation). Some of the discrepancies appear to stem from models not capturing the observed tendency for the PDO to modulate the sign of the ENSO–GB precipitation teleconnection. Of all of the models, CCSM4 most consistently captured observed connections between Pacific SST variability and GB precipitation on the examined time scales.

Full access
Courtenay Strong, Gudrun Magnusdottir, and Hal Stern

Abstract

Feedback between the North Atlantic Oscillation (NAO) and winter sea ice variability is detected and quantified using approximately 30 years of observations, a vector autoregressive model (VAR), and testable definitions of Granger causality and feedback. Sea ice variability is quantified based on the leading empirical orthogonal function of sea ice concentration over the North Atlantic [the Greenland Sea ice dipole (GSD)], which, in its positive polarity, has anomalously high sea ice concentrations in the Labrador Sea region to the southwest of Greenland and low sea ice concentrations in the Barents Sea region to the northeast of Greenland. In weekly data for December through April, the VAR indicates that NAO index (N) anomalies cause like-signed anomalies of the standardized GSD index (G), and that G anomalies in turn cause oppositely signed anomalies of N. This negative feedback process operates explicitly on lags of up to four weeks in the VAR but can generate more persistent effects because of the autocorrelation of G. Synthetic data are generated with the VAR to quantify the effects of feedback following realistic local maxima of N and G, and also for sustained high values of G. Feedback can change the expected value of evolving system variables by as much as a half a standard deviation, and the relevance of these results to intraseasonal and interannual NAO and sea ice variability is discussed.

Full access