Search Results
You are looking at 1 - 10 of 31 items for
- Author or Editor: Craig M. Lee x
- Refine by Access: All Content x
Abstract
Moored observations of atmospheric variables and upper-ocean temperatures from the Long-Term Upper-Ocean Study (LOTUS) and the Frontal Air-Sea Interaction Experiment (FASINEX) are used to examine the upper-ocean response to surface heating. FASINEX took place between January and June 1986 at 27°N, 7°M while LOTUS took place between May and October 1982 at 34°N, 7°W. The frequency-domain transfer function between rate of change of heat and the net surface heat flux is consistent with a one-dimensional heat balance between heating and convergence of vertical turbulent heat flux at timescales longer than the inertial. The observations satisfy the vertically integrated one-dimensional heat equation and indicate that the response to surface heating has been successfully isolated. Within the internal waveband, upward phase propagation in the response is inconsistent with a one-dimensional balance and the vertically integrated heat balance fails. The internal waveband response is explained as a balance between rate of change of heat, mixing, and vertical advection. A simple model, which admits internal waves forced by an oscillatory surface buoyancy flux, illustrates the competition between these three terms. Stratification modulates the depth to which surface heating is mixed. The estimated eddy diffusivity may be considered a linear function of frequency where the scaling constant reflects the mixed layer depth.
Abstract
Moored observations of atmospheric variables and upper-ocean temperatures from the Long-Term Upper-Ocean Study (LOTUS) and the Frontal Air-Sea Interaction Experiment (FASINEX) are used to examine the upper-ocean response to surface heating. FASINEX took place between January and June 1986 at 27°N, 7°M while LOTUS took place between May and October 1982 at 34°N, 7°W. The frequency-domain transfer function between rate of change of heat and the net surface heat flux is consistent with a one-dimensional heat balance between heating and convergence of vertical turbulent heat flux at timescales longer than the inertial. The observations satisfy the vertically integrated one-dimensional heat equation and indicate that the response to surface heating has been successfully isolated. Within the internal waveband, upward phase propagation in the response is inconsistent with a one-dimensional balance and the vertically integrated heat balance fails. The internal waveband response is explained as a balance between rate of change of heat, mixing, and vertical advection. A simple model, which admits internal waves forced by an oscillatory surface buoyancy flux, illustrates the competition between these three terms. Stratification modulates the depth to which surface heating is mixed. The estimated eddy diffusivity may be considered a linear function of frequency where the scaling constant reflects the mixed layer depth.
Abstract
The upper-ocean to forcing by pressure gradients and wind stress is examined using observations from the Frontal Air–Sea Interaction Experiment. A moored way acquired time series of winds. upper-ocean currents, temperatures, and salinities between winter and late spring in a region of the Sargasso Sea known for the presence of upper-ocean fronts. These fronts have timescales of 10 days and dominate current variance, while winds varied with the 4-day timescale of passing weather systems. Employing a frequency domain regression model. it is found that gestrophy accounts for most of the low-frequency (>100 h)current variance in the seasonal pycnoclino, but wind-forced shear becomes important nearer the surface. In particular, currents oriented in the typical NE–SW alonfront direction display geostrophic balance, while those perpendicular to them do not.
Wind forcing can produce geostrophic currents indirectly through Ekman pumping. and knowledge of the geostrophic shear is required to distinguish between this and currents driven directly by the wind through turbulent shear stress. Previous investigations rely on the assumption that no wind-driven stress penetrates below the mixed layer to remove the wind-coherent geostrophic flow. Baroclinic pressure gradients are calculated using estimates of density across the moored array. A linear regression model uses pressure gradients record to explicitly remove the geostrophic shear and isolate the directly wind-driven acceleration at timescales longer than 10 days. The resulting response satisfies the Ekman transport relation, penetrates well into the stratified fluid spirals to the right, and decays with depth.
Abstract
The upper-ocean to forcing by pressure gradients and wind stress is examined using observations from the Frontal Air–Sea Interaction Experiment. A moored way acquired time series of winds. upper-ocean currents, temperatures, and salinities between winter and late spring in a region of the Sargasso Sea known for the presence of upper-ocean fronts. These fronts have timescales of 10 days and dominate current variance, while winds varied with the 4-day timescale of passing weather systems. Employing a frequency domain regression model. it is found that gestrophy accounts for most of the low-frequency (>100 h)current variance in the seasonal pycnoclino, but wind-forced shear becomes important nearer the surface. In particular, currents oriented in the typical NE–SW alonfront direction display geostrophic balance, while those perpendicular to them do not.
Wind forcing can produce geostrophic currents indirectly through Ekman pumping. and knowledge of the geostrophic shear is required to distinguish between this and currents driven directly by the wind through turbulent shear stress. Previous investigations rely on the assumption that no wind-driven stress penetrates below the mixed layer to remove the wind-coherent geostrophic flow. Baroclinic pressure gradients are calculated using estimates of density across the moored array. A linear regression model uses pressure gradients record to explicitly remove the geostrophic shear and isolate the directly wind-driven acceleration at timescales longer than 10 days. The resulting response satisfies the Ekman transport relation, penetrates well into the stratified fluid spirals to the right, and decays with depth.
Abstract
Many ocean fronts experience strong local atmospheric forcing by down-front winds, that is, winds blowing in the direction of the frontal jet. An analytic theory and nonhydrostatic numerical simulations are used to demonstrate the mechanism by which down-front winds lead to frontogenesis. When a wind blows down a front, cross-front advection of density by Ekman flow results in a destabilizing wind-driven buoyancy flux (WDBF) equal to the product of the Ekman transport with the surface lateral buoyancy gradient. Destabilization of the water column results in convection that is localized to the front and that has a buoyancy flux that is scaled by the WDBF. Mixing of buoyancy by convection, and Ekman pumping/suction resulting from the cross-front contrast in vertical vorticity of the frontal jet, drive frontogenetic ageostrophic secondary circulations (ASCs). For mixed layers with negative potential vorticity, the most frontogenetic ASCs select a preferred cross-front width and do not translate with the Ekman transport, but instead remain stationary in space. Frontal intensification occurs within several inertial periods and is faster the stronger the wind stress. Vertical circulation is characterized by subduction on the dense side of the front and upwelling along the frontal interface and scales with the Ekman pumping and convective mixing of buoyancy. Cross-front sections of density, potential vorticity, and velocity at the subpolar front of the Japan/East Sea suggest that frontogenesis by down-front winds was active during cold-air outbreaks and could result in strong vertical circulation.
Abstract
Many ocean fronts experience strong local atmospheric forcing by down-front winds, that is, winds blowing in the direction of the frontal jet. An analytic theory and nonhydrostatic numerical simulations are used to demonstrate the mechanism by which down-front winds lead to frontogenesis. When a wind blows down a front, cross-front advection of density by Ekman flow results in a destabilizing wind-driven buoyancy flux (WDBF) equal to the product of the Ekman transport with the surface lateral buoyancy gradient. Destabilization of the water column results in convection that is localized to the front and that has a buoyancy flux that is scaled by the WDBF. Mixing of buoyancy by convection, and Ekman pumping/suction resulting from the cross-front contrast in vertical vorticity of the frontal jet, drive frontogenetic ageostrophic secondary circulations (ASCs). For mixed layers with negative potential vorticity, the most frontogenetic ASCs select a preferred cross-front width and do not translate with the Ekman transport, but instead remain stationary in space. Frontal intensification occurs within several inertial periods and is faster the stronger the wind stress. Vertical circulation is characterized by subduction on the dense side of the front and upwelling along the frontal interface and scales with the Ekman pumping and convective mixing of buoyancy. Cross-front sections of density, potential vorticity, and velocity at the subpolar front of the Japan/East Sea suggest that frontogenesis by down-front winds was active during cold-air outbreaks and could result in strong vertical circulation.
Abstract
Jakobshavn Glacier, west Greenland, has responded to temperature changes in Ilulissat Icefjord, into which it terminates. Basin waters in this fjord exchange with neighboring Disko Bay waters of a particular density at least once per year. This study determined the provenance of this isopycnic layer for 1990–2011 using hydrographic data from Cape Farewell to Baffin Bay. The warm Atlantic-origin core of the West Greenland Current never filled deep Disko Bay or entered the fjord basin because of bathymetric impediments on the west Greenland shelf. Instead, equal parts of Atlantic water and less-saline polar water filled the fjord basin and bathed Jakobshavn Glacier. The polar water fraction was often traceable to the East/West Greenland Current but sometimes to the colder Baffin Current. The huge annual temperature cycle on West Greenland Current isopycnals did not propagate into deep Disko Bay or the fjord basin because isopycnals over the west Greenland shelf were depressed during the warm autumn/winter phase of the cycle.
Ilulissat Icefjord basin waters were anomalously cool in summer 2010. This was not because of the record low NAO index winter of 2009/10 or atmospheric anomalies over Baffin Bay but, possibly, because of high freshwater flux through the Canadian Arctic and a weak West Greenland Current in early 2010. Together, this caused cold Baffin Current water to flood the west Greenland shelf. Subpolar gyre warming associated with the NAO anomaly in winter 2009/10 was more likely responsible for the record warm Disko Bay and Ilulissat Icefjord basin waters of 2011/12.
Abstract
Jakobshavn Glacier, west Greenland, has responded to temperature changes in Ilulissat Icefjord, into which it terminates. Basin waters in this fjord exchange with neighboring Disko Bay waters of a particular density at least once per year. This study determined the provenance of this isopycnic layer for 1990–2011 using hydrographic data from Cape Farewell to Baffin Bay. The warm Atlantic-origin core of the West Greenland Current never filled deep Disko Bay or entered the fjord basin because of bathymetric impediments on the west Greenland shelf. Instead, equal parts of Atlantic water and less-saline polar water filled the fjord basin and bathed Jakobshavn Glacier. The polar water fraction was often traceable to the East/West Greenland Current but sometimes to the colder Baffin Current. The huge annual temperature cycle on West Greenland Current isopycnals did not propagate into deep Disko Bay or the fjord basin because isopycnals over the west Greenland shelf were depressed during the warm autumn/winter phase of the cycle.
Ilulissat Icefjord basin waters were anomalously cool in summer 2010. This was not because of the record low NAO index winter of 2009/10 or atmospheric anomalies over Baffin Bay but, possibly, because of high freshwater flux through the Canadian Arctic and a weak West Greenland Current in early 2010. Together, this caused cold Baffin Current water to flood the west Greenland shelf. Subpolar gyre warming associated with the NAO anomaly in winter 2009/10 was more likely responsible for the record warm Disko Bay and Ilulissat Icefjord basin waters of 2011/12.
Abstract
Observations of sea ice and the upper ocean from three moorings in the Beaufort Sea quantify atmosphere–ice–ocean momentum transfer, with a particular focus on the inertial-frequency response. Seasonal variations in the strength of mixed layer (ML) inertial oscillations suggest that sea ice damps momentum transfer from the wind to the ocean, such that the oscillation strength is minimal under sea ice cover. In contrast, the net Ekman transport is unimpacted by the presence of sea ice. The mooring measurements are interpreted with a simplified one-dimensional ice–ocean coupled “slab” model. The model results provide insight into the drivers of the inertial seasonality: namely, that a combination of both sea ice internal stress and ocean ML depth contribute to the seasonal variability of inertial surface currents and inertial sea ice drift, while under-ice roughness does not. Furthermore, the importance of internal stress in damping inertial oscillations is different at each mooring, with a minimal influence at the southernmost mooring (within the seasonal ice zone) and more influence at the northernmost mooring. As the Arctic shifts to a more seasonal sea ice regime, changes in sea ice cover and sea ice internal strength may impact inertial-band ice–ocean coupling and allow for an increase in wind forcing to the ocean.
Abstract
Observations of sea ice and the upper ocean from three moorings in the Beaufort Sea quantify atmosphere–ice–ocean momentum transfer, with a particular focus on the inertial-frequency response. Seasonal variations in the strength of mixed layer (ML) inertial oscillations suggest that sea ice damps momentum transfer from the wind to the ocean, such that the oscillation strength is minimal under sea ice cover. In contrast, the net Ekman transport is unimpacted by the presence of sea ice. The mooring measurements are interpreted with a simplified one-dimensional ice–ocean coupled “slab” model. The model results provide insight into the drivers of the inertial seasonality: namely, that a combination of both sea ice internal stress and ocean ML depth contribute to the seasonal variability of inertial surface currents and inertial sea ice drift, while under-ice roughness does not. Furthermore, the importance of internal stress in damping inertial oscillations is different at each mooring, with a minimal influence at the southernmost mooring (within the seasonal ice zone) and more influence at the northernmost mooring. As the Arctic shifts to a more seasonal sea ice regime, changes in sea ice cover and sea ice internal strength may impact inertial-band ice–ocean coupling and allow for an increase in wind forcing to the ocean.
Abstract
Submesoscale frontal dynamics are thought to be of leading-order importance for stratifying the upper ocean by slumping horizontal density gradients to produce vertical stratification. Presented here is an investigation of submesoscale instabilities in the mixed layer—mixed layer eddies (MLEs)—as a potential mechanism of frontal slumping that stratifies the upper ocean during the transition from winter to spring, when wintertime forcings weaken but prior to the onset of net solar warming. Observations from the global Argo float program are compared to predictions from a one-dimensional mixed layer model to assess where in the world’s oceans lateral processes influence mixed layer evolution. The model underestimates spring stratification for ~75% ± 25% of the world’s oceans. Relationships between vertical and horizontal temperature and salinity gradients are used to suggest that in 30% ± 20% of the oceans this excess stratification can be attributed to the slumping of horizontal density fronts. Finally, 60% ± 10% of the frontal enhanced stratification is consistent with MLE theory, suggesting that MLEs may be responsible for enhanced stratification in 25% ± 15% of the world’s oceans. Enhanced stratification from frontal tilting occurs in regions of strong horizontal density gradients (e.g., midlatitude subtropical gyres), with a small fraction occurring in regions of deep mixed layers (e.g., high latitudes). Stratification driven by MLEs appears to constrain the coexistence of sharp lateral gradients and deep wintertime mixed layers, limiting mixed layer depths in regions of large lateral density gradients, with an estimated wintertime restratification flux of order 100 W m−2.
Abstract
Submesoscale frontal dynamics are thought to be of leading-order importance for stratifying the upper ocean by slumping horizontal density gradients to produce vertical stratification. Presented here is an investigation of submesoscale instabilities in the mixed layer—mixed layer eddies (MLEs)—as a potential mechanism of frontal slumping that stratifies the upper ocean during the transition from winter to spring, when wintertime forcings weaken but prior to the onset of net solar warming. Observations from the global Argo float program are compared to predictions from a one-dimensional mixed layer model to assess where in the world’s oceans lateral processes influence mixed layer evolution. The model underestimates spring stratification for ~75% ± 25% of the world’s oceans. Relationships between vertical and horizontal temperature and salinity gradients are used to suggest that in 30% ± 20% of the oceans this excess stratification can be attributed to the slumping of horizontal density fronts. Finally, 60% ± 10% of the frontal enhanced stratification is consistent with MLE theory, suggesting that MLEs may be responsible for enhanced stratification in 25% ± 15% of the world’s oceans. Enhanced stratification from frontal tilting occurs in regions of strong horizontal density gradients (e.g., midlatitude subtropical gyres), with a small fraction occurring in regions of deep mixed layers (e.g., high latitudes). Stratification driven by MLEs appears to constrain the coexistence of sharp lateral gradients and deep wintertime mixed layers, limiting mixed layer depths in regions of large lateral density gradients, with an estimated wintertime restratification flux of order 100 W m−2.
Abstract
An inverse method for inferring vertical velocities from high-resolution hydrographic/velocity surveys is formulated and applied to observations collected at the subpolar front of the Japan/East Sea (JES) taken during several cold-air outbreaks. The method is distinct from vertical velocity inferences based on the omega equation in that the driving mechanism for the ageostrophic flow is inferred rather than assumed and hence is particularly appropriate for application to wind- or buoyancy-forced upper-ocean currents where friction, mixing, inertial/superinertial motions, or higher-order effects can contribute along with shear/strain of the geostrophic flow to force vertical motions.
The inferred vertical circulation at the subpolar front of the JES has amplitudes
Abstract
An inverse method for inferring vertical velocities from high-resolution hydrographic/velocity surveys is formulated and applied to observations collected at the subpolar front of the Japan/East Sea (JES) taken during several cold-air outbreaks. The method is distinct from vertical velocity inferences based on the omega equation in that the driving mechanism for the ageostrophic flow is inferred rather than assumed and hence is particularly appropriate for application to wind- or buoyancy-forced upper-ocean currents where friction, mixing, inertial/superinertial motions, or higher-order effects can contribute along with shear/strain of the geostrophic flow to force vertical motions.
The inferred vertical circulation at the subpolar front of the JES has amplitudes
ABSTRACT
The effects of wind stress and surface cooling on ageostrophic vertical circulation and subduction at the subpolar front of the Japan/East Sea are investigated using a nonhydrostatic numerical model. In experiments forced by wind and/or cooling, ageostrophic vertical circulation is enhanced relative to the unforced case. Both surface cooling and wind stress intensify the circulation by enhancing frontogenesis associated with frontal meandering. Winds further strengthen vertical motions by generating internal gravity waves. Downfront winds (i.e., oriented along the frontal jet) transport surface water from the denser to lighter side of the front, causing it to migrate toward the region of higher stratification and enhancing the vertical mixing at the front. This induces outcropping of isopycnals from the middle of the pycnocline along which surface water is subducted. Hence downfront winds enhance subduction down to the middle of the pycnocline, but not beneath. On the other hand, cooling uplifts isopycnals from greater depths to the surface so that it allows for the subduction of fluid to greater depths. In contrast to the vertical circulation, frontal subduction is more intensified by surface cooling than wind stress, because part of wind-forced circulation (e.g., internal gravity wave) does not contribute to subduction. Ageostrophic vertical circulation and frontal subduction are most intense when both wind stress and surface cooling are at play.
ABSTRACT
The effects of wind stress and surface cooling on ageostrophic vertical circulation and subduction at the subpolar front of the Japan/East Sea are investigated using a nonhydrostatic numerical model. In experiments forced by wind and/or cooling, ageostrophic vertical circulation is enhanced relative to the unforced case. Both surface cooling and wind stress intensify the circulation by enhancing frontogenesis associated with frontal meandering. Winds further strengthen vertical motions by generating internal gravity waves. Downfront winds (i.e., oriented along the frontal jet) transport surface water from the denser to lighter side of the front, causing it to migrate toward the region of higher stratification and enhancing the vertical mixing at the front. This induces outcropping of isopycnals from the middle of the pycnocline along which surface water is subducted. Hence downfront winds enhance subduction down to the middle of the pycnocline, but not beneath. On the other hand, cooling uplifts isopycnals from greater depths to the surface so that it allows for the subduction of fluid to greater depths. In contrast to the vertical circulation, frontal subduction is more intensified by surface cooling than wind stress, because part of wind-forced circulation (e.g., internal gravity wave) does not contribute to subduction. Ageostrophic vertical circulation and frontal subduction are most intense when both wind stress and surface cooling are at play.
Abstract
In the California Current System, subthermocline, lenslike anticyclonic eddies generated within the California Undercurrent (CU) are one mechanism for lateral transport of the warm, saline waters of the CU. Garfield et al. established the name “Cuddies” for eddies of this type and hypothesized that they account for a significant fraction of the offshore transport of CU water. This study presents observations of subthermocline eddies collected from a time series of Seaglider surveys in the northern California Current System. Gliders made 46 crossings of subthermocline anticyclones and 17 crossings of subthermocline cyclones over 5.5 yr. Close inspection grouped these into 20 distinct anticyclones and 10 distinct cyclones. Water properties at the core of anticyclonic eddies were similar to those in the core of the CU over the continental slope; these anticyclones are examples of Cuddies. Anticyclonic (cyclonic) eddies had average radii of 20.4 (20.6) km, peak azimuthal current speeds of 0.25 (0.23) m s−1, and average core anomalies of potential vorticity 65% below (125% above) ambient values. Anticyclones contained an order of magnitude greater available heat and salt anomaly relative to background conditions than cyclones on average. Circumstantial evidence of eddy decay through lateral intrusions was found although this was not observed consistently. Observed eddy properties and the geometry of flow over the continental slope were consistent with eddy formation due to frictional torque acting on the CU. Loss of heat and salt from the CU due to subthermocline eddies is estimated to account for 44% of the freshening and cooling of the CU as it flows poleward.
Abstract
In the California Current System, subthermocline, lenslike anticyclonic eddies generated within the California Undercurrent (CU) are one mechanism for lateral transport of the warm, saline waters of the CU. Garfield et al. established the name “Cuddies” for eddies of this type and hypothesized that they account for a significant fraction of the offshore transport of CU water. This study presents observations of subthermocline eddies collected from a time series of Seaglider surveys in the northern California Current System. Gliders made 46 crossings of subthermocline anticyclones and 17 crossings of subthermocline cyclones over 5.5 yr. Close inspection grouped these into 20 distinct anticyclones and 10 distinct cyclones. Water properties at the core of anticyclonic eddies were similar to those in the core of the CU over the continental slope; these anticyclones are examples of Cuddies. Anticyclonic (cyclonic) eddies had average radii of 20.4 (20.6) km, peak azimuthal current speeds of 0.25 (0.23) m s−1, and average core anomalies of potential vorticity 65% below (125% above) ambient values. Anticyclones contained an order of magnitude greater available heat and salt anomaly relative to background conditions than cyclones on average. Circumstantial evidence of eddy decay through lateral intrusions was found although this was not observed consistently. Observed eddy properties and the geometry of flow over the continental slope were consistent with eddy formation due to frictional torque acting on the CU. Loss of heat and salt from the CU due to subthermocline eddies is estimated to account for 44% of the freshening and cooling of the CU as it flows poleward.
Abstract
This study presents amended procedures to process and map data collected by pressure-sensor-equipped inverted echo sounders (PIESs) in western boundary current regions. The modifications to the existing methodology, applied to observations of the Kuroshio from a PIES array deployed northeast of Luzon, Philippines, consist of substituting a hydrography-based mean travel time field for the PIES-based mean field and using two distinct gravest empirical mode (GEM) lookup tables across the front that separate water masses of South China Sea and North Pacific origin. In addition, this study presents a method to use time-mean velocities from acoustic Doppler current profilers (ADCPs) to reference (or “level”) the PIES-recorded pressures in order to obtain time series of absolute geostrophic velocity. Results derived from the PIES observations processed with the hydrography-based mean field and two GEMs are compared with hydrographic profiles sampled by Seagliders during the PIES observation period and with current velocity measured concurrently by a collocated ADCP array. The updated processing scheme leads to a 41% error decrease in the determination of the thermocline depth across the current, a 22% error decrease in baroclinic current velocity shear, and a 61% error decrease in baroclinic volume transports. The absolute volume transport time series derived from the leveled PIES array compares well with that obtained directly from the ADCPs with a root-mean-square difference of 3.0 Sv (1 Sv ≡ 106 m3 s–1), which is mainly attributed to the influence of ageostrophic processes on the ADCP-measured velocities that cannot be calculated from the PIES observations.
Abstract
This study presents amended procedures to process and map data collected by pressure-sensor-equipped inverted echo sounders (PIESs) in western boundary current regions. The modifications to the existing methodology, applied to observations of the Kuroshio from a PIES array deployed northeast of Luzon, Philippines, consist of substituting a hydrography-based mean travel time field for the PIES-based mean field and using two distinct gravest empirical mode (GEM) lookup tables across the front that separate water masses of South China Sea and North Pacific origin. In addition, this study presents a method to use time-mean velocities from acoustic Doppler current profilers (ADCPs) to reference (or “level”) the PIES-recorded pressures in order to obtain time series of absolute geostrophic velocity. Results derived from the PIES observations processed with the hydrography-based mean field and two GEMs are compared with hydrographic profiles sampled by Seagliders during the PIES observation period and with current velocity measured concurrently by a collocated ADCP array. The updated processing scheme leads to a 41% error decrease in the determination of the thermocline depth across the current, a 22% error decrease in baroclinic current velocity shear, and a 61% error decrease in baroclinic volume transports. The absolute volume transport time series derived from the leveled PIES array compares well with that obtained directly from the ADCPs with a root-mean-square difference of 3.0 Sv (1 Sv ≡ 106 m3 s–1), which is mainly attributed to the influence of ageostrophic processes on the ADCP-measured velocities that cannot be calculated from the PIES observations.