Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Craig MacLachlan x
  • All content x
Clear All Modify Search
Anna Maidens, Alberto Arribas, Adam A. Scaife, Craig MacLachlan, Drew Peterson, and Jeff Knight

Abstract

December 2010 was unusual both in the strength of the negative North Atlantic Oscillation (NAO) intense atmospheric blocking and the associated record-breaking low temperatures over much of northern Europe. The negative North Atlantic Oscillation for November–January was predicted in October by 8 out of 11 World Meteorological Organization Global Producing Centres (WMO GPCs) of long-range forecasts. This paper examines whether the unusual strength of the NAO and temperature anomaly signals in early winter 2010 are attributable to slowly varying boundary conditions [El Niño–Southern Oscillation state, North Atlantic sea surface temperature (SST) tripole, Arctic sea ice extent, autumn Eurasian snow cover], and whether these were modeled in the Met Office Global Seasonal Forecasting System version 4 (GloSea4). Results from the real-time forecasts showed that a very robust signal was evident in both the surface pressure fields and temperature fields by the beginning of November. The historical reforecast set (hindcasts), used to calibrate and bias correct the real-time forecast, showed that the seasonal forecast model reproduces at least some of the observed physical mechanisms that drive the NAO. A series of ensembles of atmosphere-only experiments was constructed, using forecast SSTs and ice concentrations from November 2010. Each potential mechanism in turn was systematically isolated and removed, leading to the conclusion that the main mechanism responsible for the successful forecast of December 2010 was anomalous ocean heat content and associated SST anomalies in the North Atlantic.

Full access
Chen Li, Jing-Jia Luo, Shuanglin Li, Harry Hendon, Oscar Alves, and Craig MacLachlan

Abstract

Predictive skills of the Somali cross-equatorial flow (CEF) and the Maritime Continent (MC) CEF during boreal summer are assessed using three ensemble seasonal forecasting systems, including the coarse-resolution Predictive Ocean Atmospheric Model for Australia (POAMA, version 2), the intermediate-resolution Scale Interaction Experiment–Frontier Research Center for Global Change (SINTEX-F), and the high-resolution seasonal prediction version of the Australian Community Climate and Earth System Simulator (ACCESS-S1) model. Retrospective prediction results suggest that prediction of the Somali CEF is more challenging than that of the MC CEF. While both the individual models and the multimodel ensemble (MME) mean show useful skill (with the anomaly correlation coefficient being above 0.5) in predicting the MC CEF up to 5-month lead, only ACCESS-S1 and the MME can skillfully predict the Somali CEF up to 2-month lead. Encouragingly, the CEF seesaw index (defined as the difference of the two CEFs as a measure of the negative phase relation between them) can be skillfully predicted up to 4–5 months ahead by SINTEX-F, ACCESS-S1, and the MME. Among the three models, the high-resolution ACCESS-S1 model generally shows the highest skill in predicting the individual CEFs, the CEF seesaw, as well as the CEF seesaw index–related precipitation anomaly pattern in Asia and northern Australia. Consistent with the strong influence of ENSO on the CEFs, the skill in predicting the CEFs depends on the model’s ability in predicting not only the eastern Pacific SST anomaly but also the anomalous Walker circulation that brings ENSO’s influence to bear on the CEFs.

Full access
William J. M. Seviour, Steven C. Hardiman, Lesley J. Gray, Neal Butchart, Craig MacLachlan, and Adam A. Scaife

Abstract

Using a set of seasonal hindcast simulations produced by the Met Office Global Seasonal Forecast System, version 5 (GloSea5), significant predictability of the southern annular mode (SAM) is demonstrated during the austral spring. The correlation of the September–November mean SAM with observed values is 0.64, which is statistically significant at the 95% confidence level [confidence interval: (0.18, 0.92)], and is similar to that found recently for the North Atlantic Oscillation in the same system. Significant skill is also found in the prediction of the strength of the Antarctic stratospheric polar vortex at 1 month average lead times. Because of the observed strong correlation between interannual variability in the strength of the Antarctic stratospheric circulation and ozone concentrations, it is possible to make skillful predictions of Antarctic column ozone amounts. By studying the variation of forecast skill with time and height, it is shown that skillful predictions of the SAM are significantly influenced by stratospheric anomalies that descend with time and are coupled with the troposphere. This effect allows skillful statistical forecasts of the October mean SAM to be produced based only on midstratosphere anomalies on 1 August. Together, these results both demonstrate a significant advance in the skill of seasonal forecasts of the Southern Hemisphere and highlight the importance of accurate modeling and observation of the stratosphere in producing long-range forecasts.

Open access
Panos J. Athanasiadis, Alessio Bellucci, Leon Hermanson, Adam A. Scaife, Craig MacLachlan, Alberto Arribas, Stefano Materia, Andrea Borrelli, and Silvio Gualdi

Abstract

Primarily as a response to boundary forcings, certain components of the atmospheric intraseasonal variability are potentially predictable. Particularly referring to the extratropics, the current generation of seasonal forecasting systems is making advancements in predicting these components by realistically initializing many components of the climate system, using higher resolution and utilizing large ensemble sizes.

The operational seasonal prediction system of the Met Office (UKMO) and the corresponding system of the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The UKMO system achieves unprecedented high scores in predicting the winter mean phase of the North Atlantic Oscillation (NAO; correlation 0.62) and the Pacific–North American pattern (PNA; correlation 0.82). The CMCC system, despite its smaller ensemble size and coarser resolution, also exhibits significant skill (0.42 for NAO, 0.51 for PNA). Low-frequency variability is underrepresented in both models, particularly in the eastern North Atlantic. Consequently, their intrinsic variability patterns (sectoral EOFs) are somewhat different from the observed patterns.

Regarding the representation of wintertime Northern Hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at 500 hPa. The blocking signature on the circulation and the dependence of blocking frequency on the NAO are also quite realistic for both systems. Finally, the Met Office system exhibits significant skill in predicting the winter mean frequency of blocking that relates to the NAO.

Full access
Panos J. Athanasiadis, Alessio Bellucci, Adam A. Scaife, Leon Hermanson, Stefano Materia, Antonella Sanna, Andrea Borrelli, Craig MacLachlan, and Silvio Gualdi

Abstract

Significant predictive skill for the mean winter North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) has been recently reported for a number of different seasonal forecasting systems. These findings are important in exploring the predictability of the natural system, but they are also important from a socioeconomic point of view, since the ability to predict the wintertime atmospheric circulation anomalies over the North Atlantic well ahead in time will have significant benefits for North American and European countries.

In contrast to the tropics, for the mid latitudes the predictive skill of many forecasting systems at the seasonal time scale has been shown to be low to moderate. The recent findings are promising in this regard, suggesting that better forecasts are possible, provided that key components of the climate system are initialized realistically and the coupled models are able to simulate adequately the dominant processes and teleconnections associated with low-frequency variability. It is shown that a multisystem approach has unprecedented high predictive skill for the NAO and AO, probably largely due to increasing the ensemble size and partly due to increasing model diversity.

Predicting successfully the winter mean NAO does not ensure that the respective climate anomalies are also well predicted. The NAO has a strong impact on Europe and North America, yet it only explains part of the interannual and low-frequency variability over these areas. Here it is shown with a number of different diagnostics that the high predictive skill for the NAO/AO indeed translates to more accurate predictions of temperature, surface pressure, and precipitation in the areas of influence of this teleconnection.

Full access
Jeff R. Knight, Martin B. Andrews, Doug M. Smith, Alberto Arribas, Andrew W. Colman, Nick J. Dunstone, Rosie Eade, Leon Hermanson, Craig MacLachlan, K. Andrew Peterson, Adam A. Scaife, and Andrew Williams

Abstract

Decadal climate predictions are now established as a source of information on future climate alongside longer-term climate projections. This information has the potential to provide key evidence for decisions on climate change adaptation, especially at regional scales. Its importance implies that following the creation of an initial generation of decadal prediction systems, a process of continual development is needed to produce successive versions with better predictive skill. Here, a new version of the Met Office Hadley Centre Decadal Prediction System (DePreSys 2) is introduced, which builds upon the success of the original DePreSys. DePreSys 2 benefits from inclusion of a newer and more realistic climate model, the Hadley Centre Global Environmental Model version 3 (HadGEM3), but shares a very similar approach to initialization with its predecessor. By performing a large suite of reforecasts, it is shown that DePreSys 2 offers improved skill in predicting climate several years ahead. Differences in skill between the two systems are likely due to a multitude of differences between the underlying climate models, but it is demonstrated herein that improved simulation of tropical Pacific variability is a key source of the improved skill in DePreSys 2. While DePreSys 2 is clearly more skilful than DePreSys in a global sense, it is shown that decreases in skill in some high-latitude regions are related to errors in representing long-term trends. Detrending the results focuses on the prediction of decadal time-scale variability, and shows that the improvement in skill in DePreSys 2 is even more marked.

Full access