Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Cristina Milesi x
  • All content x
Clear All Modify Search
Bereket Lebassi, Jorge González, Drazen Fabris, Edwin Maurer, Norman Miller, Cristina Milesi, Paul Switzer, and Robert Bornstein

Abstract

This study evaluated 1950–2005 summer [June–August (JJA)] mean monthly air temperatures for two California air basins: the South Coast Air Basin (SoCAB) and the San Francisco Bay Area (SFBA). The study focuses on the more rapid post-1970 warming period, and its daily minima temperature T min and maxima temperature T max values were used to produce average monthly values and spatial distributions of trends for each air basin. Additional analyses included concurrent SSTs, 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) sea level coastal pressure gradients, and GCM-downscaled average temperature T ave values.

Results for all 253 California National Weather Service (NWS) Cooperative Observer Program (COOP) sites together showed increased T ave values (0.23°C decade−1); asymmetric warming, as T min values increase faster than T max values (0.27° versus 0.04°C decade−1) and thus decreased daily temperature range (DTR) values (0.15°C decade−1). The spatial distribution of observed SoCAB and SFBA T max values exhibited a complex pattern, with cooling (−0.30°C decade−1) in low-elevation coastal areas open to marine air penetration and warming (0.32°C decade−1) in inland areas. Results also showed that decreased DTR values in the basins arose from small increases at inland sites (0.16°C decade−1) combined with large decreases (−0.58°C decade−1) at coastal sites. It is also possible that some of the current observed temperature trends could be associated with low-frequency decadal variability, expected even with a constant radiative forcing.

Previous studies suggest that cooling JJA T max values in coastal California were a result of increased irrigation, coastal upwelling, or cloud cover. The current hypothesis is that they arise (as a possible “reverse reaction”) from the global warming of inland areas, which results in increased sea-breeze flow activity. GCM model T ave warming decreased from 0.13°C decade−1 at inland sites to 0.08°C decade−1 in coastal areas. Sea level pressure increased in the Pacific high and decreased in the thermal low. The corresponding gradient thus showed a trend of 0.04 hPa 100 km−1 decade−1, supportive of the hypothesis of increased sea-breeze activity.

Full access
Mariza Costa-Cabral, John S. Rath, William B. Mills, Sujoy B. Roy, Peter D. Bromirski, and Cristina Milesi

Abstract

Large-scale climatic indices have been used as predictors of precipitation totals and extremes in many studies and are used operationally in weather forecasts to circumvent the difficulty in obtaining robust dynamical simulations of precipitation. The authors show that the sea level pressure North Pacific high (NPH) wintertime anomaly, a component of the Northern Oscillation index (NOI), provides a superior covariate of interannual precipitation variability in Northern California, including seasonal precipitation totals, drought, and extreme precipitation intensity, compared to traditional ENSO indices such as the Southern Oscillation index (SOI), the multivariate ENSO index (MEI), Niño-3.4, and others. Furthermore, the authors show that the NPH anomaly more closely reflects the influence of Pacific basin conditions over California in general, over groups of stations used to characterize statewide precipitation in the Sierra Nevada range, and over the southern San Francisco Bay region (NASA Ames Research Center). This paper uses the term prediction to refer to the estimation of precipitation (the predictand) from a climate covariate (the predictor), such as a climate index, or atmospheric moisture. In this sense, predictor and predictand are simultaneous in time. Statistical models employed show the effectiveness of the NPH winter anomaly as a predictor of total winter precipitation and daily precipitation extremes at the Moffett Field station. NPH projected by global climate models is also used in conjunction with atmospheric humidity [atmospheric specific humidity (HUS) at the 850-hPa level] to obtain projections of mean and extreme precipitation. The authors show that future development of accurate forecasts of NPH anomalies issued several months in advance is important for forecasting total winter precipitation and is expected to directly benefit water resource management in California. Therefore, the authors suggest that investigating the lead-time predictability of NPH anomalies is an important direction for future research.

Full access
Cynthia Rosenzweig, Radley M. Horton, Daniel A. Bader, Molly E. Brown, Russell DeYoung, Olga Dominguez, Merrilee Fellows, Lawrence Friedl, William Graham, Carlton Hall, Sam Higuchi, Laura Iraci, Gary Jedlovec, Jack Kaye, Max Loewenstein, Thomas Mace, Cristina Milesi, William Patzert, Paul W. Stackhouse Jr., and Kim Toufectis

A partnership between Earth scientists and institutional stewards is helping the National Aeronautics and Space Administration (NASA) prepare for a changing climate and growing climate-related vulnerabilities. An important part of this partnership is an agency-wide Climate Adaptation Science Investigator (CASI) Workgroup. CASI has thus far initiated 1) local workshops to introduce and improve planning for climate risks, 2) analysis of climate data and projections for each NASA Center, 3) climate impact and adaptation toolsets, and 4) Center-specific research and engagement.

Partnering scientists with managers aligns climate expertise with operations, leveraging research capabilities to improve decision-making and to tailor risk assessment at the local level. NASA has begun to institutionalize this ongoing process for climate risk management across the entire agency, and specific adaptation strategies are already being implemented.

A case study from Kennedy Space Center illustrates the CASI and workshop process, highlighting the need to protect launch infrastructure of strategic importance to the United States, as well as critical natural habitat. Unique research capabilities and a culture of risk management at NASA may offer a pathway for other organizations facing climate risks, promoting their resilience as part of community, regional, and national strategies.

Full access