Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: D. A. Hegg x
  • Refine by Access: All Content x
Clear All Modify Search
G. M. Martin
D. W. Johnson
D. P. Rogers
P. R. Jonas
P. Minnis
, and
D. A. Hegg


Decoupling of the marine boundary layer beneath stratocumulus clouds and the formation of cumulus clouds at the top of a surface-based mixed layer (SML) have frequently been observed and modeled. When such cumulus clouds penetrate the overlying stratocumulus layer, the cloud microphysics and hence the radiative properties of the cloud are altered locally. Observations made during a series of Lagrangian experiments in the Azores as part of the Atlantic Stratocumulus Transition Experiment (ASTEX, June 1992) have been analyzed to ascertain how the properties of a stratocumulus layer with which cumulus clouds are interacting differ from those of an unaffected cloud layer. The results suggest that in regions where cumulus clouds penetrate the cloud layer, the stratocumulus is thickened as the cumuli spread out into its base. Transport of air from the SML into the cloud by convective updrafts is observed, and the increase in available moisture within the penetrating cumulus clouds results in increased liquid water content and hence changes in the droplet size spectra. The greater liquid water path results in a larger cloud optical depth, so that regions where cumulus are interesting with the stratocumulus layer can be observed in satellite measurements. Therefore, it is likely that the surface energy budget may be significantly altered by this process, and it may be necessary to parameterize these effects in large-scale numerical models.

Full access