Search Results

You are looking at 1 - 10 of 38 items for

  • Author or Editor: D. Jackson x
  • Refine by Access: All Content x
Clear All Modify Search
D. R. Jackson, J. Austin, and N. Butchart

Abstract

In this paper results are presented from an improved version of the troposphere–stratosphere configuration of the Met Office Unified Model (UM). The new version incorporates a number of changes, including new radiation and orographic gravity wave parameterization schemes, an interannually varying sea surface temperature and sea ice climatology, and the inclusion of convective momentum transport. The UM climatology is compared with assimilated data and with results from a previous version of the UM. It is shown that the model cold biases in the January winter stratosphere and the January and July summer stratosphere are reduced, chiefly because the new radiation scheme is more accurate. The separation between subtropical and polar night jets in July is also better simulated. In addition, in the current version stratospheric planetary wave amplitudes in southern winter are less than half those in northern winter, which is in much better agreement with observations than the previous model version. Despite these improvements, the model still has a cold bias in the winter polar stratosphere, which suggests that the model representation of gravity wave drag is inadequate. Sensitivity tests were carried out and showed that the improved simulation of the separation of subtropical and polar night jets in July is due both to the different sea ice climatology and to the inclusion of convective momentum transport. The improved simulation of stationary wave amplitudes in July cannot be attributed to an individual model change, although it seems to be related to changed wave propagation and dissipation within the stratosphere rather than changes in the tropospheric forcing.

Full access
Peter L. Jackson and D. G. Steyn

Abstract

Gap winds in Howe Sound, British Columbia, are described and placed in context by reviewing studies of similar phenomena in other locations. An observational program consisting of a surface mesonetwork and vertical soundings shows that gap winds vary considerably along and across the channel, as well as vertically. Wind strength generally increases down channel, and strongest winds are found below 1000-m depth. Results from application of a 3D mesoscale numerical model to a gap wind case compare reasonably well with observations. Model output reveals more details of horizontal and especially vertical flow structure than is possible from observations. Model vertical cross sections and Froude number output indicate similarity with hydraulic flow. This is further substantiated by a force-balance analysis of model output.

Full access
Peter L. Jackson and D. G. Steyn

Abstract

A simple shallow-water model of gap wind in a channel that is based upon hydraulic theory is presented and compared with observations and output from a 3D mesoscale numerical model. The model is found to be successful in simulating gap winds. The speed and depth of gap wind flow is strongly controlled by topography. Horizontal or vertical channel contractions can act to force strong, shallow supercritical flow downwind and light, deep subcritical flow upwind. Force-balance analysis of the hydraulic model output confirms mesoscale model results and indicates that the prime force balance in gap wind is between external pressure gradient and friction for supercritical flow and between external pressure gradient and height pressure gradient for subcritical flow. This force balance changes near channel controls when the balance is between advection and height pressure gradient. Sensitivity analyses show positive sensitivity of gap wind speed to changes in discharge and external pressure gradient, negative sensitivity to changes in friction and boundary layer height at the channel exit, and mixed sensitivity of gap wind speed to changes in reduced gravity.

Full access
Sherwood B. Idso and Ray D. Jackson

Abstract

Full access
Sherwood B. Idso and Ray D. Jackson

Abstract

Full access
D. R. Jackson, J. Methven, and V. D. Pope

Abstract

Recent literature has described a “transition zone” between the average top of deep convection in the Tropics and the stratosphere. Here transport across this zone is investigated using an offline trajectory model. Particles were advected by the resolved winds from the European Centre for Medium-Range Weather Forecasts reanalyses. For each boreal winter clusters of particles were released in the upper troposphere over the four main regions of tropical deep convection (Indonesia, central Pacific, South America, and Africa). Most particles remain in the troposphere, descending on average for every cluster. The horizontal components of 5-day trajectories are strongly influenced by the El Niño–Southern Oscillation (ENSO), but the Lagrangian average descent does not have a clear ENSO signature.

Tropopause crossing locations are first identified by recording events when trajectories from the same release regions cross the World Meteorological Organization lapse rate tropopause. Most crossing events occur 5–15 days after release, and 30-day trajectories are sufficiently long to estimate crossing number densities. In a further two experiments slight excursions across the lapse rate tropopause are differentiated from the drift deeper into the stratosphere by defining the “tropopause zone” as a layer bounded by the average potential temperature of the lapse rate tropopause and the profile temperature minimum. Transport upward across this zone is studied using forward trajectories released from the lower bound and back trajectories arriving at the upper bound. Histograms of particle potential temperature (θ) show marked differences between the transition zone, where there is a slow spread in θ values about a peak that shifts slowly upward, and the troposphere below 350 K. There forward trajectories experience slow radiative cooling interspersed with bursts of convective heating resulting in a well-mixed distribution. In contrast θ histograms for back trajectories arriving in the stratosphere have two distinct peaks just above 300 and 350 K, indicating the sharp change from rapid convective heating in the well-mixed troposphere to slow ascent in the transition zone. Although trajectories slowly cross the tropopause zone throughout the Tropics, all three experiments show that most trajectories reaching the stratosphere from the lower troposphere within 30 days do so over the west Pacific warm pool. This preferred location moves about 30°–50° farther east in an El Niño year (1982/83) and about 30° farther west in a La Niña year (1988/89). These results could have important implications for upper-troposphere–lower-stratosphere pollution and chemistry studies.

Full access
Sherwood B. Idso, Ray D. Jackson, and Robert J. Reginato

Abstract

A procedure is developed for removing data scatter in the thermal inertia approach to remote sensing of soil moisture that arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitarily assigned to be 18°C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible the technique could also be useful in other thermal inertia applications, such as lithographic mapping.

Full access
Sherwood B. Idso, Ray D. Jackson, and Robert J. Reginato

Abstract

A simple laboratory technique is described for making rapid emittance measurements with an infrared thermometer. It is shown that when the infrared thermometer head is held flush against a surface, its output is a linear function of surface emittance. Thus, viewing two or more surfaces of known emittance in this manner “calibrates” the infrared thermometer, so that viewing an unknown surface at the same temperature in this manner will yield its emittance., Emittance values of the standard surfaces employed may be obtained via any of a variety of emittance measurement methods previously developed. A nomograph is presented that shows the possible errors that can occur as a result of temperature differences that may exist between the test and standard surfaces.

Full access
John J. Bates, X. Wu, and D. L. Jackson

Abstract

A method for the intercalibration of the high-resolution infrared sounder (HIRS) upper-tropospheric water vapor band brightness temperature data is developed and applied to data from 1981 to 1993. Analysis of the adjusted anomaly time series show the location and strength of both the large-scale ascending and descending circulations in the Tropics as well as water vapor anomalies. Comparison of these HIRS data with outgoing longwave radiation and sea surface temperature anomalies reveals that both convection and increased upper-tropospheric moisture occur over anomalously warm water in the deep Tropics. The development and movement of deep convection and increased upper-tropospheric moisture can clearly he traced during the El Niño/Southern Oscillation warm events. These HIRS data are particularly useful in monitoring upper-tropospheric water vapor variability between the Tropics and subtropics.

Full access
Zachary D. Tessler, Arnold L. Gordon, and Christopher R. Jackson

Abstract

Observations of early stage, large-amplitude, nonlinear internal waves in the Sulu Sea are presented. Water column displacement and velocity profile time series show the passage of two solitary-like waves close to their generation site. Additional observations of the same waves are made as they propagate through the Sulu Sea basin. These waves of depression have an estimated maximum amplitude of 44 m. Observed wave amplitude and background stratification are used to estimate parameters for both a Korteweg–de Vries (K-dV) and a Joseph wave solution. These analytic model solutions are compared with a fully nonlinear model as well. Model wave half-widths bracket the observed wave, with the Joseph model narrower than the K-dV model. The modal structure of the waves change as they transit northward though the Sulu Sea, with higher mode features present in the southern Sulu Sea, which dissipate by the time the waves reach the north. Observed and modeled energies are roughly comparable, with observed potential energy estimated at 6.5 × 107 J m−1, whereas observed kinetic energy is between 4.6 × 107 J m−1 and 1.5 × 108 J m−1, depending on the integration limits. If this energy remains in the Sulu Sea, an average dissipation rate of 10−9 W kg−1 is required over its volume, helping to maintain elevated mixing rates.

Full access